分类
文章平均质量分 72
诗蕊
Put your heart into it
展开
-
人工神经网络(ANN)入门二
在人工神经网络(ANN)入门一中我们可以用单层的人工神经网络解决AND和OR的运算。但是很多问题例如异或运算(exclusive-or)不能使用单层的神经网络找到这样一个线性平面把训练集中的数据分开。下面表格中是一个异或运算 x_1 x_2 output 1 1 -1 0 1 1 0 0 -1 1 0 1原创 2017-12-31 20:16:41 · 24844 阅读 · 0 评论 -
人工神经网络(ANN)入门一
人工神经网络(ANN)是由试图去模仿生物神经系统而激发的。人的大脑主要由神经元(neuron)组成,神经元通过轴突(axon)连接在一起。当神经元收到刺激时,神经脉冲(nerve impulses)通过轴突由一个神经元传递到另一个神经元。一个神经元通过树突(dendtrite)连接到其他神经元的轴突,树突是神经元细胞体的延伸物。树突和一个轴突的连接点叫做突触(synapse)。原创 2017-12-23 22:33:07 · 29829 阅读 · 1 评论 -
卷积神经网络(CNN)
在人工神经网络中介绍过神经网络的结构: 卷积神经网络是人工神经网络的变形体,即对功能和形式做了变化,通常用于图像数据处理,结构如下: 从上图中我们可以看出卷积神经网络比起人工神经网络多了很多层级结构,卷积神经网络可以分为: (1)数据输入层(input layer) (2)卷积计算层(CONV layer) (3)ReLU激励层(ReLU layer) (4)池化层(pooli原创 2018-01-22 22:08:06 · 10124 阅读 · 0 评论 -
7种常见的机器学习算法衡量指标
在做机器学习进行实验过程中,我们需要使用分类精度、均方误差等方法衡量模型的性能,从而判断训练出的模型的表现是否符合预期要求。本文整理了7种常见的机器学习算法衡量指标:分类精度、对数损失、混淆矩阵、曲线下面积(AUC)、F1分数、平均绝对误差、均方误差。1. 分类精度分类精度其实就是我们所说的准确性,是正确预测数占总样本数的比值。 Accuracy=NumberofCorrectpredi...原创 2018-03-17 00:12:02 · 5961 阅读 · 0 评论 -
机器学习的分类
严格意义上来说,机器学习可以分为以下几类:有监督学习,无监督学习,半监督学习,强化学习。1. 有监督学习有监督学习是指在训练过程中的数据是同时又特征和标签的,也就是说模型在训练过程中是知道正确结果的,模型可以根据标签为指导进行参数调整,这种学习方式好像学习被监督了一样,因此监督学习的意义为:学习的过程有标签作为指导算法参数调整的过程。2. 无监督学习无监督学习是在训练过程中,数...原创 2018-05-17 12:42:44 · 4492 阅读 · 0 评论 -
对贝叶斯(Bayes)线性回归的理解(一)
线性回归假设:Y=β1X+β0+ϵY=β1X+β0+ϵY=\beta_1X+\beta_0+\epsilon我们假设数据具有以下形式: y=β1x+β0+ϵy=β1x+β0+ϵy=\beta_1x+\beta_0+\epsilon where ϵϵ\epsilon~N(μ,σμϵ)N(μ,σϵμ)N(\mu, \sigma_{\epsilon}^{\mu}) 这样的模型可以生产如下的数据:...原创 2018-05-31 17:37:04 · 8013 阅读 · 9 评论 -
softmax函数和交叉熵损失函数
在CNN中,全连接层后会加上softmax函数,并且一般用交叉熵函数作为损失函数。这篇文章主要记录softmax把CNN的输出变成概率的过程以及交叉熵如何为优化过程提供度量,并且用python实现。softmax函数softmax函数将一个N维向量的输入的每一维都转换成区间维(0,1)之间的一个实数,公式如下: pi=eai∑Nk=1eakpi=eai∑k=1Nekap_i=\frac{...原创 2018-08-11 16:27:26 · 6703 阅读 · 0 评论 -
标签传播算法(Label Propagation Algorithm)
半监督学习(Semi-supervised Learning SSL)半监督学习是一种有监督学习和无监督学习想结合的一种方法,其主要思想是基于数据分布上的模型假设,利用少量的已标注数据进行指导并预测未标记数据的标记,并合并到标记数据集中去。标签传播算法的基本思路标签传播算法是基于图的半监督学习方法,基本思路是从已标记的节点的标签信息来预测未标记的节点的标签信息,利用样本间的关系,建...原创 2018-09-03 19:55:33 · 30303 阅读 · 10 评论