回归
文章平均质量分 78
诗蕊
Put your heart into it
展开
-
线性回归(liner regression)原理及python实现
之前介绍过的神经网络属于分类,首先介绍一下分类和回归的区别:分类和回归主要区别在于Y变量,分类的Y变量通常是类别变量,例如性别、颜色、是否健康等;而回归的Y变量为连续数值型,如房价、降雨量等。线性回归有几种分类,我们从最简单的线性回归开始说。-简单线性回归(simple linear regression)简单线性回归通常就是包含一个自变量x和一个因变量y,这两个变量可以用一条直线来模拟。如原创 2018-01-07 21:51:27 · 19480 阅读 · 1 评论 -
逻辑回归(Logistic Regression)原理及Python实现
前面有讲过线性回归,但是很多非线性问题不能用简单的线性回归来分类。这时需要用到逻辑回归,逻辑回归是一种非线性的回归。原创 2018-01-14 23:16:35 · 18541 阅读 · 0 评论 -
一个简单的tensorflow程序来预测线性方程参数
用代码来实现一个简单的tensorflow的结构用来预测一个线性方程y = 0.1x + 0.3的参数。 首先需要导入tensorflow 和 numpy两个包import tensorflow as tfimport numpy as np导入之后我们进行的第一步是建立数据,这里随机生成100个x_data,根据实际参数生成y_data:x_data = np.random.原创 2018-01-29 19:42:12 · 6824 阅读 · 0 评论 -
机器学习中的五种回归模型及其优缺点
本文将会介绍五种常见的回归模型的概念及其优缺点,包括线性回归(Linear Regression), 多项式回归(Ploynomial Regression), 岭回归(Ridge Regression),Lasso回归和弹性回归网络(ElasticNet Regression).1.线性回归(Linear Regression)回归是在建模过程中用于分析变量之间的关系、以及变量是如何...原创 2018-04-14 17:25:35 · 27028 阅读 · 3 评论 -
用xgboost构建一个简单的模型
这篇文章我们使用xgboost构建一个简单的模型以及xgboost与scikit-learn一起使用构建模型,用到的数据集是UCI机器学习库的mushroom数据集,用数据集中的22个特征来判断蘑菇是否有毒,步骤如下: 1. 导入模型需要的工具包,这里面我们用到了xgboost, sklearn, matplotlib, time, graphvizimport xgboost as xgb...原创 2018-03-27 11:23:42 · 4662 阅读 · 0 评论