分类算法(二)—— FastText 包括文本分类相关调用和操作
文本表示(一)—— word2vec(skip-gram CBOW) glove, transformer, BERT
这里整理FastText的相关原理介绍
参考link
简介
fasttext是facebook开源的一个词向量与文本分类工具,在2016年开源,典型应用场景是“带监督的文本分类问题”。提供简单而高效的文本分类和表征学习的方法,性能比肩深度学习而且速度更快。
fastText架构类似于word2vec的CBOW,使用词袋以及n-gram袋表征语句,还有使用子字(subword)信息,并通过隐藏表征在类别间共享信息。并且在分类层采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。
可以说,fastText利用了深度学习的原理,但是比深度学习更快。
fasttext应用的两个不同任务:
- 有效文本分类 :有监督学习
- 学习词向量表征:无监督学习
代码
文本分类之前已经介绍过,训练模型的代码参见这里: