分类算法(二)—— FastText(原理介绍)

FastText是Facebook推出的文本分类和词向量工具,它结合了word2vec的CBOW模型并引入了子字信息,利用层次softmax加速计算。在保持高效的同时,FastText在文本分类任务上表现优秀,支持多语言且在大类别数量时尤为适用。其特点包括使用N-gram特征、有监督学习以及优化的softmax层级。
摘要由CSDN通过智能技术生成

 

分类算法(二)—— FastText 包括文本分类相关调用和操作

文本表示(一)—— word2vec(skip-gram CBOW) glove, transformer, BERT 

 

这里整理FastText的相关原理介绍     

参考link

简介

fasttext是facebook开源的一个词向量与文本分类工具,在2016年开源,典型应用场景是“带监督的文本分类问题”。提供简单而高效的文本分类和表征学习的方法,性能比肩深度学习而且速度更快。

fastText架构类似于word2vec的CBOW,使用词袋以及n-gram袋表征语句,还有使用子字(subword)信息,并通过隐藏表征在类别间共享信息。并且在分类层采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。   

可以说,fastText利用了深度学习的原理,但是比深度学习更快。

fasttext应用的两个不同任务:

  • 有效文本分类 :有监督学习
  • 学习词向量表征:无监督学习

代码

文本分类之前已经介绍过,训练模型的代码参见这里: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微知girl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值