- 博客(54)
- 收藏
- 关注
原创 YOLO多张图片预测代码
##-------------------------------------## 对单张图片进行预测#-------------------------------------## from yolo import YOLO# from PIL import Image# yolo = YOLO()# while True:# img = input('Input image filename:')# try:# image = Imag
2020-12-22 14:00:49 1214 1
原创 基于pytorch神经网络模型搭建训练流程
文章目录1.定义头文件2.定义 dataloader3.定义⽹络(Net)4.定义损失函数和优化器5.训练⽹络(⽬的是得出最佳参数的⽹络)模型搭建模型搭建步骤:1.定义头文件import torch as timport torchvision as tv #数据处理,导入、预览import torchvision.transforms as transforms #数据变换from torch.autograd import Variable #梯度import torch.nn as
2020-12-22 13:57:44 1589
原创 数据增强调研
文章目录数据增强调研报告一、常用的增强技术(一)几何变换(二)颜色空间转换二、一般增强技术(一)内核过滤器(Kernel filters)(二)混合图像(mixing image)[5](三)、高级增强技术一、特征空间增强(Feature space augmentation)(二)、Adversarial training对抗训练(三)GAN‑based Data Augmentation[10][11](四)、神经风格转移[11] Neural Style Transfe(五)、元学习[2][13]四、
2020-11-23 11:13:21 2071 2
原创 python基础. 字典 集合,序列
字典1. 可变类型与不可变类型序列是以连续的整数为索引,与此不同的是,字典以"关键字"为索引,关键字可以是任意不可变类型,通常用字符串或数值。字典是 Python 唯一的一个 映射类型,字符串、元组、列表属于序列类型。那么如何快速判断一个数据类型 X 是不是可变类型的呢?两种方法:麻烦方法:用 id(X) 函数,对 X 进行某种操作,比较操作前后的 id,如果不一样,则 X 不可变,如果一样,则 X 可变。便捷方法:用 hash(X),只要不报错,证明 X 可被哈希,即不可变,反过来不可被
2020-07-29 17:40:56 330
原创 python基础no.6. 列表 元组,字符串
文章目录列表1. 列表的定义2. 列表的创建3. 向列表中添加元素4. 删除列表中的元素5. 获取列表中的元素6. 列表的常用操作符7. 列表的其它方法**练习题**:请将列表里所有数字修改成原来的两倍3、leetcode 852题 山脉数组的峰顶索引列表简单数据类型整型<class 'int'>浮点型<class 'float'>布尔型<class 'bool'>容器数据类型列表<class 'list'>元组<class 'tu
2020-07-26 22:34:32 256
转载 python基础 异常处理
文章目录异常处理1. Python 标准异常总结2. Python标准警告总结3. try - except 语句4. try - except - finally 语句5. try - except - else 语句6. raise语句****练习题**猜数字:**小结: 三个try 语句的区别异常处理异常就是运行期检测到的错误。计算机语言针对可能出现的错误定义了异常类型,某种错误引发对应的异常时,异常处理程序将被启动,从而恢复程序的正常运行。1. Python 标准异常总结BaseExcep
2020-07-25 21:38:23 201
转载 python 基础 条件+循环语句
条件语句1. if 语句if expression: expr_true_suiteif 语句的 expr_true_suite 代码块只有当条件表达式 expression 结果为真时才执行,否则将继续执行紧跟在该代码块后面的语句。单个 if 语句中的 expression 条件表达式可以通过布尔操作符 and,or和not 实现多重条件判断。【例子】if 2 > 1 and not 2 > 3: print('Correct Judgement!')#
2020-07-23 22:51:28 177
转载 python基础no.2. 位运算
位运算感谢^^:https://github.com/datawhalechina/team-learning-program/tree/master/Python-Language1. 原码、反码和补码二进制有三种不同的表示形式:原码、反码和补码,计算机内部使用补码来表示。原码:就是其二进制表示(注意,最高位是符号位)。00 00 00 11 -> 310 00 00 11 -> -3反码:正数的反码就是原码,负数的反码是符号位不变,其余位取反(对应正数按位取反)。00 00
2020-07-22 22:42:45 146
转载 python基础no.1. 变量、运算符与数据类型
标题# 变量、运算符与数据类型1. 注释在 Python 中,# 表示注释,作用于整行。【例子】单行注释# 这是一个注释print("Hello world")# Hello world''' ''' 或者 """ """ 表示区间注释,在三引号之间的所有内容被注释【例子】多行注释'''这是多行注释,用三个单引号这是多行注释,用三个单引号这是多行注释,用三个单引号'''print("Hello china") # Hello china"""这是多行注释,用三
2020-07-22 21:53:26 395
原创 如何入门树莓派,opencv,tensorflow,pytorch,keras库的树莓派镜像,树莓派开发搭建工具。
一、树莓派是什么以及是干什么的!!i我的理解就是树莓派是一个类似于VMware虚拟机的Linux的小型电脑,里面可以考入各种镜像,比如树莓派官方镜像,Ubuntu镜像,kali linux镜像等等。像是树莓派镜像的好处则是,里面自带了很多编程语言工具包,例如Python,Java,c等,不需要你自己自行安装了。其次树莓派只有信用卡那么大小,便携,易存储的特点也是他最近销量很高的原因。对于树莓派来讲,其应用,在我看来是两个大的方面:1.自身当做服务器。2.利用摄像头去做视觉方面的二次开发。下面是
2020-06-09 11:29:02 505 2
原创 通过FTP软件树莓派和主机文件夹传输以及遇到的各种坑解决。
连接过程,不详细赘述:参考文件:树莓派和电脑文件夹传输坑及解决方案坑1:Network error: Connection refused错误解决:各种IP端口都是正确的,此时要去查看ssh是否开启service sshd status我查看得到,ssh 开启失败。failed下面开启ssh:service sshd start如果actived,则开启成功,可以连接了,但是我出现问题坑2:Job for ssh.service failed because the contro.
2020-06-07 10:54:38 1344
原创 CV之街景字符编码识别五----pytorch之模型集成
一、集成学习bagging:基本流程:Bagging的基本流程:经过 M 轮自助采样,可以得到 M 个包含 N 个训练样本的采样集。然后基于每个采样集训练出一个基学习器。最后将这 M 个基学习器进行组合,得到集成模型。在使用 Bagging学习器进行预测时:分类任务采取简单投票法,取每个基学习器的预测类别的众数。回归任务使用简单平均法,取每个基学习器的预测值的平均。参考链接:https://www.jianshu.com/p/4ef2ddf3d615Boosting 就是一族可以
2020-06-02 19:09:34 399
原创 RF(随机森林)与GBDT,GBDT与xgboost的区别
RF(随机森林)与GBDT之间的区别与联系相同点:1.都是由多棵树组成,最终的结果都是由多棵树一起决定。2.RF和GBDT在使用CART树时,可以是分类树或者回归树。不同点:1.组成随机森林的树可以并行生成,而GBDT是串行生成2.随机森林的结果是多数表决表决的,而GBDT则是多棵树累加之和3.随机森林对异常值不敏感,而GBDT对异常值比较敏感4.随机森林是减少模型的方差,而GBDT是减少模型的偏差5.随机森林不需要进行特征归一化。而GBDT则需要进行特征归一化GBDT与xgboost的
2020-06-01 23:36:43 1339
原创 RuntimeError: Expected object of scalar type Long
RuntimeError: Expected object of scalar type Long but got scalar type Int for argument #2 ‘target’该错误两个关键点:1.target2.long即target所使用的数据要改为long的类型。我是在基于pytorch做一个视觉问题,该问题出在,在定义dataloader时,所用类型需要转换。解决方案:修改定义dataset时所用到的getitem的返回的值的类型划线部位改为:torchLong
2020-06-01 15:54:18 2085
原创 BrokenPipeError: [Errno 32] Broken pipe 基于pytorch的训练 num_worker参数理解
BrokenPipeError: [Errno 32] Broken pipe 解决原因:在训练过程中,设置的num_workers过大修改为 num_workers=0 即可。num_worker参数理解下面作者讲的很详细,大致就是设置参数大的话,例如参数为10,就可以有10个线程来加载batch到内存。当然参数设置过大,而自己内存不够的情况下,就会出现线程管道破裂,即broken pipe ,所以一般默然设置为0.当然:如果num_worker设为0,意味着每一轮迭代时,dataloa
2020-05-31 12:15:28 34652 9
原创 CV之街景字符编码识别四----pytorch之模型训练与验证 ,如何构造训练集和验证集
一、训练集,验证集,测试集的作用训练集(Train Set):模型用于训练和调整模型参数;验证集(Validation Set):用来验证模型精度和调整模型超参数;测试集(Test Set):验证模型的泛化能力。通俗来讲:训练集用于训练给定的模型。验证集用于在模型之间进行选择(例如,随机森林还是神经网络更适合你的问题?)你想要一个有40棵树的随机森林还是50棵树的随机森林?)测试集告诉你,你做的怎么样。二、训练集,验证集的构造 在对于训练好的模型,也许会出现,欠拟合,过拟合,以及完
2020-05-29 21:22:20 407
原创 Python 2to3.py -w 将Python2 的代码转为Python3 的代码
尝试了网上简历reg文件的方式来转换,但不知道为什么,流程一样,我的2to3的功能出不来,所以最后还是选择使用在cmd中转换。首先我们先找到Python中的2to3.py文件。大多分布位置都一样,我的在C:\Users\Administrator\AppData\Local\Programs\Python\Python37\Tools\scripts文件下。打开cmd,进入该文件夹目录下:cd C:\Users\Administrator\AppData\Local\Programs\Pyth
2020-05-29 16:56:06 362
原创 树莓派3b+ 安装Python3.7+opencv 遇到的 ImportError: /usr/local/lib/python3.7/:undefined symbol: __解决
一、Python3.7首先输入 Python查看树莓派Python版本,我的是2.7,所以我删掉了(这个地方暂时不知道删掉是不是必须的,但是我先卸掉了)1.卸载2.7sudo apt-get autoremove python2.72.安装Python3.7sudo ln -s /usr/bin/python3.7 /usr/bin/python#安装pip3sudo ln -s /usr/bin/pip3 /usr/bin/pip二、opencv2使用 pip 直接安装:s
2020-05-27 18:08:57 4234
原创 CV之街景字符编码识别三----pytorch之定义网络,损失函数和优化器
文章目录一、定义网络(Net)二、定义损失函数和优化器一、定义网络(Net)用一个名为Net的类定义需要继承torch.nn中的nn.Module(注意M大写)Net类包括初始化函数和forward函数两部分1)初始化init_(self): 放置有可学习参数的层(注意init前后均是两个下划线)a)对nn.Module初始化: super(Net, self)init()b)定义卷积和全连接操作(用到nn.Conv2d(), nn.Linear())2)前向操作forward(self
2020-05-25 10:54:42 241
原创 CV之街景字符编码识别----基于pytorch的数据读取与扩充
项目来源:https://tianchi.aliyun.com/competition/entrance/531795/informationtask参考:github链接本task主要是学习如何使用pytorch进行数据读取与扩充。常见的对图像数据的读取我们可以采用pillow和opencv库来进行。一、简单数据读取pillow读取与保存:im=Image.open("cat.jpg")im.save("cat.jpg",jpg)opencv读取:img=cv2.imread('cat
2020-05-23 19:03:43 295
原创 基于pytorch的 神经网络的基本框架
基于pytorch的 神经网络的基本框架:import torch as timport torchvision as tvimport torchvision.transforms as transformsfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optim1.定义 dataloader1)主要函数:tv
2020-05-23 19:03:08 962
原创 CV之街景字符编码识别----赛题理解
项目来源:天池CVCV之街景字符编码识别----赛题理解赛题以街道字符为为赛题数据:如下所示:项目在提供字符标签的情况下考察模型的训练.其中给到的标签json文件中包含的内容有:最后以score作为评价指标即提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:Score=编码识别正确的数量/测试集图片数量。整体而言就是对字符编码识别正确率的一个判断。但需要注意的问题,因赛题中提供的图片的字符长度不一,需
2020-05-20 18:19:34 217
原创 pycharm下 文件里的模块不能调用 解决 from xxx import xxx no model name xxx
1.确保有__init__.py 文件(这个文件是空文件)2.在project下右键文件夹 >>Mark DIrectory as >Sources root
2020-04-13 17:59:08 1688
原创 mask RCNN将json 文件转换为Coco形式 出现KeyError: 'imageData'
mask RCNN将json 文件转换为Coco形式:原代码:import argparseimport jsonimport matplotlib.pyplot as pltimport skimage.io as ioimport cv2from labelme import utilsimport numpy as npimport globimport PIL.Imag...
2020-04-05 10:48:05 4900 6
原创 二手车交易价格预测----:模型结果融合
二手车交易价格预测 ——模型结果融合通过对赛题的分析,我们可以看出此类问题是对价格进行回归预测,那我们对于数据需要事先做预处理分析,这里我们采用EDA探索性数据分析来进行。探索性数据分析是对调查,观测所得到的一些初步的杂乱无章的数据,在尽可能量少的先验假定下进行处理。通过作图,制表等形式和方程拟合计算某些特征量等手段,探索数据的结构和规律的一种数据分析方法。对于此类问题我们可以从以下五个方面...
2020-04-04 20:50:14 964
原创 批处理图像文件大小Python代码 OSError: cannot write mode RGBA as JPEG ,解决方案
文章目录在批处理图像文件大小Python代码(图片格式都是JPG或者JPEG,以下代码可使用):OSError: cannot write mode RGBA as JPEG批处理图像大小Python最终代码(适用于图像文件有png格式的)在批处理图像文件大小Python代码(图片格式都是JPG或者JPEG,以下代码可使用):# -*- coding: utf-8 -*-import os...
2020-04-03 21:43:16 3861
原创 二手车交易价格预测----建模调参(4)
**二手车交易价格预测----建模调参(4)**地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX这次打卡还是按照教程走一遍,先梳理一下主要内容的结构。这次任务主体分为五大部分:线性回归模型模型验证嵌入式特征选择模...
2020-04-01 20:22:33 374
原创 windows 下解决 pip install pycocotools涵盖了所有坑,包解决
因为种种原因要安装 pycocotools一开始直接 pip install pycocotools 报错building ‘pycocotools._mask’ extensionerror: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools”: http://landi...
2020-03-31 14:29:36 6052 2
原创 二手车交易价格预测——特征工程(2) 生成适用于树,xgboostde的数据
二手车交易价格预测——特征工程(1)生成适用于树,xgboostde的数据针对生成LR的模型的链接:https://editor.csdn.net/md/?articleId=105156750文章目录二手车交易价格预测——特征工程(1)生成适用于树,xgboostde的数据针对生成LR的模型的链接:[https://editor.csdn.net/md/?articleId=10515675...
2020-03-28 17:19:58 692
原创 二手车交易价格预测——特征工程(2) 生成适用于LR的数据
针对于LR,NN模型的数据处理文章目录针对于LR,NN模型的数据处理导入数据1.缺失值的处理1.1虚拟变量法处理缺失值1.2删除缺失值2.异常值处理2.1 box_cos 变换2.2 长尾截断3.特征构造3.1时间特征构造3.2地理信息特征构造3.3 统计量特征构造4.特征归一化4.1.Rescaling(最小最大归一化,不免疫outlier)4.2Standardization(标准化/z...
2020-03-28 17:14:50 648
原创 第一个大坑jupyter logout 注销了,需要输密码。我????鬼知道我的密码是多少?,或者换浏览器一样适用。。jupyter打开后不能用我pycharm,即终端里的包:解决
no zuo no die 的一晚上要不是临近十二点解决,我都快疯啦,今晚上遇见了历史上最多的坑。文章目录1.第一个大坑jupyter logout 注销了,需要输密码。我????鬼知道我的密码是多少?,或者换浏览器一样适用第二个大坑,jupyter打开后不能用我pycharm,即终端里的包:解决。划重点:就是jupyter 打开后不能用pycharm里已有的包怎么解决的(当然是在有anaco...
2020-03-25 00:31:43 2840 5
原创 二手车交易价格预测 ——EDA 探索性数据分析
文章目录二手车交易价格预测 ——EDA 探索性数据分析1.数据的导入及数据信息的查看2.变量是否有异常值3.变量是否含有缺失值4.样本是否存在不平衡问题5.变量之间是否存在冗余6.基于目标price进行分析查看各变量的分布情况6.1类别变量对price的影响分析6.2数值变量对price的影响分析总结二手车交易价格预测 ——EDA 探索性数据分析通过对赛题的分析,我们可以看出此类问题是对价格进...
2020-03-24 17:27:15 795
原创 边缘保留滤波算法 EPF
边缘保留滤波算法 EPF方法:1.高斯双边滤波高斯双边滤波与高斯模糊的区别:高斯双边滤波 在空间和边缘方面,即双边滤波,就是指同时考虑了 空间位置和像素值分布这两点而高斯模糊只是在空间上进行模糊,在边缘上没有2.mean shift 迁移#EPFimport cv2 as cvimport numpy as np#高斯双边滤波# 在空间和边缘方面,即双边滤波,就是指同...
2020-03-16 17:37:56 990
原创 泛洪填充 均值模糊,中值模糊,锐化 高斯模糊
文章目录ROI 泛洪填充均值模糊,中值模糊,锐化高斯模糊ROI 泛洪填充import cv2 as cvimport numpy as npdef fill(image): copyImg=image.copy() h,w=image.shape[:2] mask=np.zeros([h+2,w+2],np.uint8)#规定这么大 cv.floodFil...
2020-03-16 11:53:05 300
原创 python+opencv 色彩转换,分离与合并+视频提取及利用inRange 提取锁定颜色 B站245
文章目录python+opencv色彩转换,分离与合并视频提取与 利用inRange 提取锁定颜色从电脑自带摄像头中获取视频python+opencv色彩转换,分离与合并import cv2 as cvimport numpy as np#色彩转换def color_change(image): #色彩转换 gray=cv.cvtColor(image,cv.COLOR_BG...
2020-03-11 11:24:29 694
原创 用Python改变图像像素+像素运算 B站opencv+python6,7
用Python改变图像像素from PIL import Imageimport cv2 as cvdef produceImage(file_in, width, height, file_out): image = Image.open(file_in) resized_image = image.resize((width, height), Image.ANTIALI...
2020-03-11 11:22:28 150
原创 YoLo卷积神经网络各层计算,卷积层计算输入的图片大小是448*448*3输出224*224*64原因?
该部分卷积层计算输入的t图片大小是4484483的,第一层卷积层,卷积核大小是77的,步长是2,pad=1,filters=64,请问输出为什么为:224224*64?回答:此处的pad应该类似于标志位,0或非0,不一定是1.即pad=1应该是指:pad为真看一下源码,在yolo里面pad=1的含义并不是pad=1,而是在处理的时候判断pad是否等于1,如果等于1,那pad=kernelsi...
2020-03-07 18:11:32 7051 7
原创 交并比ion( intersection over union )及优化总结
1.IoUIoU又名交并比,是一种计算不同图像相互重叠比例的算法,时常被用于深度学习领域的目标检测或语义分割任务中。优点:IoU初步满足了计算两个图像的几何图形相似度的要求,简单实现了图像重叠度的计算。缺点:无法体现两个图形之间的距离以及图形长宽比的相似性。2.GIoUGIoU(Generalized Intersection over Union)相较于IoU多了一个‘Generali...
2020-03-06 11:38:36 1791
原创 MYSQL 尚硅谷B站自整 111-178 基础篇结束
DDL 数据定义语句创建 修改 删除CREATE ALTER DROP库的管理1.创建库CREATE DATABASE IF NOT EXISTS book;2.修改库(一般不修改)修改库名在文件夹中修改即可#更改库的字符集 ALTER DATABASE book CHARACTER SET gkb;3.删除库 DROP DATABASE IF EXISTS book;...
2020-03-05 19:51:06 284
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人