BrokenPipeError: [Errno 32] Broken pipe 基于pytorch的训练 num_worker参数理解

本文探讨了在使用PyTorch进行深度学习模型训练时遇到的BrokenPipeError问题,指出设置过大的num_workers参数是导致此错误的主要原因。通过将num_workers设置为0,可以有效避免线程管道破裂的情况,但会牺牲一部分数据加载速度。
摘要由CSDN通过智能技术生成

BrokenPipeError: [Errno 32] Broken pipe 解决

在这里插入图片描述

原因:
在训练过程中,设置的num_workers过大
在这里插入图片描述
修改为 num_workers=0 即可。

num_worker参数理解

下面作者讲的很详细,大致就是设置参数大的话,例如参数为10,就可以有10个线程来加载batch到内存。当然参数设置过大,而自己内存不够的情况下,就会出现线程管道破裂,即broken pipe ,所以一般默然设置为0.
当然:如果num_worker设为0,意味着每一轮迭代时,dataloader不再有自主加载数据到RAM这一步骤(因为没有worker了),而是在RAM中找batch,找不到时再加载相应的batch。缺点当然是速度更慢。
具体参考以下链接。
参考:pytorch中num_workers详解

当在使用yolov5s时出现了"BrokenPipeError: [Errno 32] Broken pipe"错误,这是一个Broken Pipe错误,在Python中常见的错误之一。该错误通常是由于子进程在主进程完成引导阶段之前尝试启动而引起的。为了解决这个问题,可以按照以下步骤进行操作: 1. 在主模块中使用适当的惯用语法,即`if __name__ == '__main__':`,这样可以确保子进程在正确的时机启动。可以在主模块的开头加上这样一行代码,以确保在主模块被执行时,才会启动子进程。 2. 如果程序不需要冻结以生成可执行文件,可以省略"freeze_support()"语句。 3. 另外,还可以尝试将使用torch.utils.data.DataLoader函数时的参数num_workers设置为0。这个参数指定了在数据加载过程中使用的子进程数量。将其设置为0可以避免在多进程加载数据时可能出现的问题。 综上所述,为了解决yolov5s报错"BrokenPipeError: [Errno 32] Broken pipe",可以尝试使用以上方法来修复该错误。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Pytorch cifar10_tutorial.py问题BrokenPipeError: [Errno 32] Broken pipe【附完整代码】](https://blog.csdn.net/rllrllrll/article/details/88037353)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Python提示[Errno 32]Broken pipe导致线程crash错误解决方法](https://download.csdn.net/download/weixin_38519849/13772038)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值