leetcode之Unique Paths

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
这里写图片描述
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题目描述:一个机器人从m*n网格的左上角走到右下角,每次只能向下或者向右移动一格,求它总共有多少种不同的走法。
思路:典型的动态规划问题,设path[i][j]为机器人从(0,0)走到(i,j)的走法总数,则有如下递推关系式:
path[i][j] = path[i-1][j]+path[i][j-1]
算法的时间复杂度为:O(m*n),优化内存的空间复杂度为O(min(m,n)),代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> path(n, 1);
        for(int i = 1; i < m; ++i)
            for(int j = 1; j < n; ++j)
                path[j] = path[j] + path[j-1];
        return path[n-1];
    }
};

该题还可以看做是一个组合问题,显然总共需要走m+n-2步,其中向下m-1步,向右n-1步,因此使用数学上的组合问题求解算法同样可以解决。
该题的扩展,Unique Paths II,在上题的基础上加了一些限制,也就是网格中设置了一些障碍,这些障碍不能直接跨过,同样求机器人走法的总数。
思路:同样采用动态规划,并且和上题的思路相近,此时的递推关系式如下:
path[i][j] = obstacleGrid[i][j] ? 0 : (path[i-1][j]+path[i][j-1]),也就是如果(i,j)处是障碍,那么path[i][j]=0。算法的时间复杂度为:O(m*n),优化内存的空间复杂度为O(min(m,n)),代码如下:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int row = obstacleGrid.size();
        int col = obstacleGrid[0].size();
        int i, j;
        vector<int> path(col);
        path[0] = 1;
        for(i = 0; i < row; ++i)
            for(j = 0; j < col; ++j)
                if(obstacleGrid[i][j] == 1)
                    path[j] = 0;
                else
                    path[j] += path[j-1];
        return path[col-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值