线性代数
文章平均质量分 92
kdaHugh
这个作者很懒,什么都没留下…
展开
-
椭圆是一个凸集的证明
椭圆是一个凸集的证明常见的凸集椭圆是凸集的证明从 norm 的角度去看 ellipsoid常见的凸集我们在 Affine set 和 convex set 的定义 一文中讲解了凸集(convex set)的概念。我们先来回顾一下凸集的定义:如果连接集合 CCC 当中的任何两点构成的线段也在集合 CCC 之中,那么我们就说集合 CCC 是一个 convex set。或者我们用数学的语言来描述:对于集合 CCC 中的任何 x1,x2x_1, x_2x1,x2,对任意 0≤θ≤10 \leq \th原创 2020-12-27 20:54:08 · 5973 阅读 · 6 评论 -
矩阵的零空间和零度
矩阵的零空间和零度矩阵的零空间 (nullspace)矩阵的零度 (nullity)秩-零度定理 (The Rank-Nullity Theorem)numpy 与 scipy 中求矩阵的秩矩阵的零空间 (nullspace)给定矩阵 A∈Rm×nA \in \mathbb{R}^{m \times n}A∈Rm×n,那么矩阵的零空间定义为:如果 X∈Rn×1X \in \mathbb{R}...原创 2020-04-05 12:19:50 · 17543 阅读 · 0 评论 -
奇异值分解 -- singular value decomposition (SVD)
奇异值分解-- singular value decomposition摘要什么是奇异值分解左右奇异向量程序实现不确定性附录与 PCA 的关系参考文献摘要在本文中我们首先介绍什么是奇异值分解(singular value decomposition, SVD)。我们会给出 SVD 的公式,以及其在Python中的实现。我们也会讨论 SVD 与 主成分分析 (principal componen...原创 2020-03-28 17:07:34 · 964 阅读 · 0 评论 -
主成分分析(principal component analysis, PCA)公式
主成分分析(principal component analysis, PCA)公式主成分分析什么是主成分求解 PCA 的公式数学证明程序验证参考文献主成分分析什么是主成分要进行主成分分析(principal component analysis),我们首先要理解什么是主成分。假设我们的数据(红色的点)如下图所示。我们看到,每一个红色的点都有两个坐标,(x, y)(x, \, y)(x,...原创 2020-03-15 16:31:15 · 22858 阅读 · 1 评论