HDOJ P2544 最短路 最短路各种算法演练

最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 24567    Accepted Submission(s): 10577


Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 

Sample Input
  
  
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
 

Sample Output
  
  
3 2
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2066  1874  1217  2112  1142 
 

喜闻乐见的单源点最短路模板题。那就复习(学习)下吧。
常见的算法就是floyd、dijkstra、dijkstra+heap、Bellman-Ford、SPFA这几种,34两种算法我之前没学过。常见的存图方式有邻接矩阵和链式前向星。

在学习算法的过程中,发现了两个小技巧:
定义最大值的方法:0x3f3f3f3f 大约是10^10.而且两倍不会超int型。memset(a,0x3f,sizeof(a));可以初始化。 再也不用-1代表无穷大了,处理起来麻烦的要死 >O<
STL: queue应该是掌握了,可是小根堆没掌握(意思就是dijkstra+heap写不出来 T_T)。。。

本来想一下午AC的。可是我拙计的学习效率。居然拖到了2014年。
1314。13和之前的拙计,在14和以后,要改变。flighting!

floyd 邻接矩阵存图:
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;
int map[V][V],m,n,i,j,k,a,b;
int main()
{
	while (cin>>n>>m && (m || n)){
		memset(map,0x3f,sizeof(map));
		for (i=1;i<=m;++i){
			cin>>a>>b;
			cin>>map[a][b];
			map[b][a]=map[a][b];
		}
		for (k=1;k<=n;++k)
			for (i=1;i<=n;++i)
				for (j=1;j<=n;++j)
					if (i!=j && j!=k && k!=i && map[i][j]>map[i][k]+map[k][j])
						map[i][j]=map[i][k]+map[k][j];
		cout<<map[1][n]<<endl;
	}
	return 0;
}

dijkstra 邻接矩阵存图
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;
int map[V][V],vis[V],dis[V],path[V];
int m,n,i,j,a,b;
int main()
{
	while (cin>>n>>m && (m || n)){
		memset(map,0x3f,sizeof(map));
		memset(vis,0,sizeof(vis));
		for (i=1;i<=m;++i){
			cin>>a>>b;
			cin>>map[a][b];
			map[b][a]=map[a][b];
		}
		vis[1]=1;
		for (i=1;i<=n;++i){
			dis[i]=map[1][i];
			path[i]=1;
		}
		dis[1]=0; path[1]=-1;
		int pre=1;
		for (i=1;i<n;++i){
			for (j=1;j<=n;++j)
				if (vis[j]==0 && dis[pre]+map[pre][j]<dis[j]){
					dis[j]=dis[pre]+map[pre][j];
					path[j]=pre;
				}
			int min=MAXINT;
			for(j=1;j<=n;++j)
				if (vis[j]==0 && dis[j]<min){
					min=dis[j]; pre=j;
				}
			vis[pre]=1;
		}
		cout<<dis[n]<<endl;
	}
	return 0;
}

dijkstra+heap 链式前向星存图
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

const int V=110;
const int E=V*V;
int head[V],dis[V],link[E],data[E],next[E];
bool vis[V];
int n,m,i,a,b,c;

int main()
{
	while (cin>>n>>m && (m || n)){
		memset(head,0,sizeof(head));
		for (i=1;i<=m*2;++i){
			cin>>a>>b>>c;
			data[i]=c; link[i]=b;
			next[i]=head[a]; head[a]=i;
			i++;
			data[i]=c; link[i]=a;
			next[i]=head[b]; head[b]=i;
		}
		priority_queue <pair<int, int> > q;
		memset(vis,false,sizeof(vis));
		memset(dis,0x3f,sizeof(dis));
		dis[1]=0; q.push(make_pair(0,1));
		while (!q.empty()){
			int cur=q.top().second;
			q.pop();
			if (!vis[cur]){
				vis[cur]=true;
				for (i=head[cur];i;i=next[i]){
					int v=link[i];
					if(!vis[v] && dis[v]>dis[cur]+data[i]){
						dis[v]=dis[cur]+data[i];
						q.push(make_pair(-dis[v],v));
					}
				}
			}
		}
		cout<<dis[n]<<endl;
	}
	return 0;
}

Bellman-Ford 边表存图
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;

struct edge{
	int a,b,s;
}map[V*V/2];
int dis[V];
int m,n,i,j,a,b; bool flag;
int main()
{
	while (cin>>n>>m && (m || n)){
		memset(dis,0x3f,sizeof(dis));
		for (i=1;i<=m;++i){
			cin>>map[i].a>>map[i].b>>map[i].s;
			map[i+m].a=map[i].b;
			map[i+m].b=map[i].a;
			map[i+m].s=map[i].s;
  		}
		flag=true; dis[1]=0;
		for (i=1;i<=n && flag;++i){
			flag=false;
			for (j=1;j<=m*2;++j)
				if (dis[map[j].a]+map[j].s<dis[map[j].b]){
					dis[map[j].b]=dis[map[j].a]+map[j].s;
					flag=true;
				}
		}
		cout<<dis[n]<<endl;
	}
	return 0;
}

SPFA 链式前向星存图
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

const int V=110;
const int E=V*V;
int head[V],dis[V],link[E],data[E],next[E];
bool vis[V];
int n,m,i,a,b,c;

int main()
{
	while (cin>>n>>m && (m || n)){
		memset(head,0,sizeof(head));
		for (i=1;i<=m*2;++i){
			cin>>a>>b>>c;
			data[i]=c; link[i]=b;
			next[i]=head[a]; head[a]=i;
			i++;
			data[i]=c; link[i]=a;
			next[i]=head[b]; head[b]=i;
		}
		memset(vis,false,sizeof(vis));
		memset(dis,0x3f,sizeof(dis));
		vis[1]=true; dis[1]=0;
		
		queue<int> q; q.push(1);
		while (!q.empty()){
			i=head[q.front()];
			while (i){
				if (dis[link[i]]>dis[q.front()]+data[i]){
					dis[link[i]]=dis[q.front()]+data[i];
					if (!vis[link[i]]){
						q.push(link[i]);
						vis[link[i]]=true;
					}
				}
				i=next[i];
			}
			vis[q.front()]=false;
			q.pop();
		}
		cout<<dis[n]<<endl;
	}
	return 0;
}

期末考试之后。。。我会继续刷题的!!!

kdwycz的网站:  http://kdwycz.com/

kdwyz的刷题空间:http://blog.csdn.net/kdwycz


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值