最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 24567 Accepted Submission(s): 10577
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
Source
Recommend
喜闻乐见的单源点最短路模板题。那就复习(学习)下吧。
常见的算法就是floyd、dijkstra、dijkstra+heap、Bellman-Ford、SPFA这几种,34两种算法我之前没学过。常见的存图方式有邻接矩阵和链式前向星。
在学习算法的过程中,发现了两个小技巧:
定义最大值的方法:0x3f3f3f3f 大约是10^10.而且两倍不会超int型。memset(a,0x3f,sizeof(a));可以初始化。 再也不用-1代表无穷大了,处理起来麻烦的要死 >O<
STL: queue应该是掌握了,可是小根堆没掌握(意思就是dijkstra+heap写不出来 T_T)。。。
本来想一下午AC的。可是我拙计的学习效率。居然拖到了2014年。
1314。13和之前的拙计,在14和以后,要改变。flighting!
floyd 邻接矩阵存图:
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;
int map[V][V],m,n,i,j,k,a,b;
int main()
{
while (cin>>n>>m && (m || n)){
memset(map,0x3f,sizeof(map));
for (i=1;i<=m;++i){
cin>>a>>b;
cin>>map[a][b];
map[b][a]=map[a][b];
}
for (k=1;k<=n;++k)
for (i=1;i<=n;++i)
for (j=1;j<=n;++j)
if (i!=j && j!=k && k!=i && map[i][j]>map[i][k]+map[k][j])
map[i][j]=map[i][k]+map[k][j];
cout<<map[1][n]<<endl;
}
return 0;
}
dijkstra 邻接矩阵存图
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;
int map[V][V],vis[V],dis[V],path[V];
int m,n,i,j,a,b;
int main()
{
while (cin>>n>>m && (m || n)){
memset(map,0x3f,sizeof(map));
memset(vis,0,sizeof(vis));
for (i=1;i<=m;++i){
cin>>a>>b;
cin>>map[a][b];
map[b][a]=map[a][b];
}
vis[1]=1;
for (i=1;i<=n;++i){
dis[i]=map[1][i];
path[i]=1;
}
dis[1]=0; path[1]=-1;
int pre=1;
for (i=1;i<n;++i){
for (j=1;j<=n;++j)
if (vis[j]==0 && dis[pre]+map[pre][j]<dis[j]){
dis[j]=dis[pre]+map[pre][j];
path[j]=pre;
}
int min=MAXINT;
for(j=1;j<=n;++j)
if (vis[j]==0 && dis[j]<min){
min=dis[j]; pre=j;
}
vis[pre]=1;
}
cout<<dis[n]<<endl;
}
return 0;
}
dijkstra+heap 链式前向星存图
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int V=110;
const int E=V*V;
int head[V],dis[V],link[E],data[E],next[E];
bool vis[V];
int n,m,i,a,b,c;
int main()
{
while (cin>>n>>m && (m || n)){
memset(head,0,sizeof(head));
for (i=1;i<=m*2;++i){
cin>>a>>b>>c;
data[i]=c; link[i]=b;
next[i]=head[a]; head[a]=i;
i++;
data[i]=c; link[i]=a;
next[i]=head[b]; head[b]=i;
}
priority_queue <pair<int, int> > q;
memset(vis,false,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
dis[1]=0; q.push(make_pair(0,1));
while (!q.empty()){
int cur=q.top().second;
q.pop();
if (!vis[cur]){
vis[cur]=true;
for (i=head[cur];i;i=next[i]){
int v=link[i];
if(!vis[v] && dis[v]>dis[cur]+data[i]){
dis[v]=dis[cur]+data[i];
q.push(make_pair(-dis[v],v));
}
}
}
}
cout<<dis[n]<<endl;
}
return 0;
}
Bellman-Ford 边表存图
#include <iostream>
#include <cstring>
using namespace std;
const int V=110;
const int MAXINT=0x3f3f3f3f;
struct edge{
int a,b,s;
}map[V*V/2];
int dis[V];
int m,n,i,j,a,b; bool flag;
int main()
{
while (cin>>n>>m && (m || n)){
memset(dis,0x3f,sizeof(dis));
for (i=1;i<=m;++i){
cin>>map[i].a>>map[i].b>>map[i].s;
map[i+m].a=map[i].b;
map[i+m].b=map[i].a;
map[i+m].s=map[i].s;
}
flag=true; dis[1]=0;
for (i=1;i<=n && flag;++i){
flag=false;
for (j=1;j<=m*2;++j)
if (dis[map[j].a]+map[j].s<dis[map[j].b]){
dis[map[j].b]=dis[map[j].a]+map[j].s;
flag=true;
}
}
cout<<dis[n]<<endl;
}
return 0;
}
SPFA 链式前向星存图
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int V=110;
const int E=V*V;
int head[V],dis[V],link[E],data[E],next[E];
bool vis[V];
int n,m,i,a,b,c;
int main()
{
while (cin>>n>>m && (m || n)){
memset(head,0,sizeof(head));
for (i=1;i<=m*2;++i){
cin>>a>>b>>c;
data[i]=c; link[i]=b;
next[i]=head[a]; head[a]=i;
i++;
data[i]=c; link[i]=a;
next[i]=head[b]; head[b]=i;
}
memset(vis,false,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
vis[1]=true; dis[1]=0;
queue<int> q; q.push(1);
while (!q.empty()){
i=head[q.front()];
while (i){
if (dis[link[i]]>dis[q.front()]+data[i]){
dis[link[i]]=dis[q.front()]+data[i];
if (!vis[link[i]]){
q.push(link[i]);
vis[link[i]]=true;
}
}
i=next[i];
}
vis[q.front()]=false;
q.pop();
}
cout<<dis[n]<<endl;
}
return 0;
}
期末考试之后。。。我会继续刷题的!!!