P2544 [AHOI2004]数字迷阵(斐波那契数列+矩阵快速幂)

传送门

题解:先跟据斐波那契数列退出第一列公式,然后再根据公式推出第二列公式,最后使用矩阵快速幂得出答案即可。


#include<cstdio>
#include<cstring>
#include<cmath>

typedef long long ll;

const int N=2;

ll MOD;

struct node{
    ll a[10][10];
}tmp,ans,t;


node matrix(node x,node y ){
    node q;
    for(int i=1;i<=N;i++){
        for(int j=1;j<=N;j++){
            q.a[i][j]=0;
            for(int k=1;k<=N;k++){
                q.a[i][j]=(q.a[i][j]+x.a[i][k]*y.a[k][j]+MOD)%MOD;
            }
        }
    }
    return q;
}

void quick_ma(ll n){
    for(int i=1;i<=N;i++){
        for(int j=1;j<=N;j++){
            ans.a[i][j]=0;
        }
    }
    for(int i=1;i<=N;i++) ans.a[i][i]=1;
    t=tmp;
    while(n){
        if(n&1) ans=matrix(ans,t);
        n>>=1;
        t=matrix(t,t);
    }
}

int main(){

    ll c2,c1;
    ll x,y;
    scanf("%lld%lld%lld",&x,&y,&MOD);
    c1=((ll)(x*(1+sqrt(5)))/2+x-1)%MOD;
    c2=((c1*2-x+1)%MOD+MOD)%MOD;
//    printf("%lld  %lld\n",x,c0);
    tmp.a[1][1]=1;
    tmp.a[1][2]=1;
    tmp.a[2][1]=1;
    tmp.a[2][2]=0;
//    printf("%lld  %lld\n",c1,c2);
    if(y>2){
        quick_ma(y-2);
        printf("%lld\n",(c2*ans.a[1][1]%MOD+c1*ans.a[1][2]%MOD)%MOD);
    }else{
        if(y==1)
            printf("%lld\n",c1);
        else printf("%lld\n",c2);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值