每日一练:LeeCode-347. 前 K 个高频元素(中) - 【优先级队列】

本文介绍了如何使用Java实现解决LeetCode问题347——前K个高频元素,通过统计元素出现频率并利用优先级队列(小顶堆)存储频率最高的k个元素,以优化时间复杂度。作者提供了一段Java代码示例,展示了如何在O(nlogk)时间内解决问题。
摘要由CSDN通过智能技术生成

本文是力扣LeeCode-347. 前 K 个高频元素 学习与理解过程,本文仅做学习之用,对本题感兴趣的小伙伴可以出门左拐LeeCode。

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:
输入: nums = [1], k = 1
输出: [1]

提示:
1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

思路:

  • 统计元素出现的频率 ---------> 使⽤map来进⾏统计
  • 对元素的频率进行排序 ---------> 由于map的value频率排序完,没法再找到对应的key,所以应该使⽤⼀种 容器适配器 就是 优先级队列,针对这道题,使用优先级队列最优,快排也比不上。
  • 找出前K个⾼频元素 ---------> 相比大顶堆需要所有元素都排序一遍,使用小顶堆只排序k个元素,性能更优。 因为要统计最⼤前k个元素,只有⼩顶堆每次将最⼩的元素弹出,最后⼩顶堆⾥积累的才是前k个最⼤元素。

优先级队列:优先级队列内部元素是⾃动依照元素的权值排列,优先级队列对外接⼝只是从队头取元素,从队尾添加元素,再⽆其他取元素的⽅式,看起来就是⼀个队列。默认使用大顶堆排序,若修改使用小顶堆排序,需要重写优先级队列的compare()方法。

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 使用map字典,统计每个元素出现的次数,元素为键,元素出现的次数为值
        Map<Integer,Integer> map = new HashMap<>();
        for(int i=0;i<nums.length;i++){
            if(map.containsKey(nums[i])){
                map.put(nums[i],map.get(nums[i])+1);
            }else{
                map.put(nums[i],1);
            }
        }

        PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>(){
            // @Override:不写leeCode也可通过
            public int compare(Integer a,Integer b){
                return map.get(a)-map.get(b);
            }
        });

        // 遍历map,用最小堆保存频率最大的k个元素
        for(Integer key : map.keySet()){
            // if(pq.size()<k){
            //     pq.add(key);
            // }else if(map.get(key)>map.get(pq.peek())){
            //     pq.remove();
            //     pq.add(key);
            // }
            pq.add(key);
            if(pq.size()>k){
                pq.remove();
            }
        }

         // 取出最小堆中的元素
        int[] res = new int[k];
        int j=0;
        while(!pq.isEmpty()){
            res[j++] = pq.remove();
        }
        return res;
    }
}

大家有更好的方法,请不吝赐教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孔靠得住

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值