微服务下如何保证事务一致性

文章探讨了随着业务增长,从单体服务向微服务转变过程中遇到的分布式事务一致性问题。介绍了CAP理论,说明在分布式系统中无法同时保证一致性、可用性和分区容错。接着,讨论了2PC和3PC两种两阶段提交的优化策略,以及TCC(Try-Confirm-Cancel)模式在确保强一致性方面的应用。此外,还提到了本地消息表和最大努力通知方案作为解决分布式事务的其他方法。
摘要由CSDN通过智能技术生成

1、微服务产生的背景

传统单机服务,保证ACID是很容易的,但随着业务量的提升,订单系统,财务系统,人员管理系统都需要拆分成独立的模块,单个服务器已经无法满足这么大的负载,所以每个独立的模块都需要安装在单独的服务器。

  1. cap理论

当每个独立的模块都拆分过后,分布式事务的一致性就出现了问题。A用户在银行转账给B用户,A用户扣款100成功,但是B用户那边的系统宕机或者一些网络原因,导致B用户账户不变,这时候就出现了不一致性。

cap理论就此诞生,一致性,可用性和分区容错率。这三个是不能全部满足的,当满足一致性和可用性,就要牺牲分区容错率,也就是只能满足其二。

也是就出现了base理论,最终一致性就好。

3、2pc/3pc

两阶段提交的工作步骤是什么呢?

分为管理者和协调者。

当收到订单请求后

1)管理者询问各个参与者是否已经准备就绪。

2)当全部都准备就绪,则所有参与者发起commit,反之则不发起。

这种强一致性是有缺陷的,因为大家都是同步,如果有一个参与者超时或者业务处理时间过长,这时候其他参与者都会阻塞。

于是3pc就出现了。

三阶段提交主要优化了超时时间,会预处理消息,当某个参与者超时的时候不会一直阻塞。

4、TCC

TCC模式是阿里官网的模式,全程是Try confirm cancel。TCC也属于强一致性,适合与金额相关的业务。

Tcc工作步骤是什么呢?

Try阶段:

  1. 用户下单,把状态改为下单中
  2. 库存-1,冻结1个库存
  3. 金额-10,冻结10金额

Confirm阶段:

  1. 改为下单成功
  2. 正常减少库存
  3. 正常扣款-10

Cancel阶段:

1)改为下单失败

2)库存还原

3)金额还原

  1. 本地消息表

1)A系统本地成功写入业务表,存入消息表,发送mq。

2)B系统通过消息表主键保证幂等性,然后再存入业务表。

3)A系统通过监听B系统是否消费成功来决定是否回滚。

  1. 最大努力通知方案

上游在本地事务一切正常,发送mq消息给下游,重试几次,消费成功则ok,消费失败则通过手动补偿机制进入死信队列,存入表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后端从入门到精通

你的鼓励是我最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值