如何基于FFT和IFFT实现相关运算

本文介绍了在项目开发中遇到的帧同步问题,通过C++中的FFT和IFFT算法以及Matlab示例,展示了如何使用相关运算检测信号偏移并计算互相关,以提高数据处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     我们在进行项目开发时,经常会遇到帧同步的问题,帧同步是在接收的信号中找到数据的起始位置;实际的信号,跟理想的信号一般都有偏移,偏移多少位的数据,直接从数据中不容易观察,这时就需要用到相关运算。

      一般的算法类项目开发是基于C++来做,标准的C++中是没有相关运算的函数库,可以基于FFT和IFFT算法来实现:

为了提高系统的数据处理速度,可以采用FFT技术来求接收信号的互相关:

  

实现框图:

上图中,x2(n) 信号是基于 x1(n) 信号有偏移;

峰值搜索为计算数组中最大值的索引;

用matlab做验证

clear;
clc;
xx = [1,3,5,7,9,1,3,5,5,2,4,6,8,10,6];
tempxx = zeros(1,16);
tempyy = zeros(1,16);
for i = 1:length(xx)
    tempxx(i) = xx(i);
end
%yy 基于xx偏移5个数据
yy = [xx(6:15),xx(1:5)];

for i = 1:length(yy)
    tempyy(i) = yy(i);
end

FFT_input11 = fft(tempxx);
FFT_input22 = fft(tempyy);
FFT_input_conj22 = conj(FFT_input22);


result = FFT_input11.*FFT_input_conj22;
out = ifft(result);

ff = abs(out);
gg = ff.^2;

plot(gg)

[value index]= max(gg);

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值