数学基础-高数day1-2导数

1,导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作

即:

平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是

这个比值表示函数在这段区间内的平均变化速度。

瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。

2,单侧导数

2.1左导数

函数 f(x)在点 x=a 处的左导数定义为:

其中 h→0−表示 h 从负方向趋近于 0。

2.2右导数

函数 f(x)在点 x=a处的右导数定义为:

其中 h→0+表示 h 从正方向趋近于 0。

2.3导数的存在性

函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:

2.导数的几何意义

2.1切线

f(x)在点 (a,f(a))处的斜率:

所以切线方程可以表示为:

化简切线方程:

将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.2法线

与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为

法线方程的一般形式是:

化简法线方程: 将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

3,可导与连续的关系

3.1连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:

这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

3.2可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:

这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

3.3可导性蕴含连续性

如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。

证明:如果函数 f(x) 在点 x=a处可导,则

我们要证f(x)在点 x=a 处连续,需要证明

变换上述等式:

所以

3.4连续性不一定蕴含可导性

反例:考虑函数 f(x)=∣x|在 x=0处是否可导。

证明:

连续性:

函数是连续的

可导性:

左导数:

右导数:

左右导数不相等,所以函数不是可导的。

eg1

f(x)=\sqrt[3]{x}

连续,在x=0处不可导。

解:

或者

在x=0处导数不存在,所以f(x)在x=0不可导。

可以看出,可导的函数从几何意义上看曲线是连续并光滑的,同时切线斜率不能垂直于x轴。

4,求导公式

4.1常数规则

\dfrac{d}{dx}(c)=0

其中 c 是常数。

4.2幂函数规则

其中 n 是任意实数。


4.3常数倍规则

其中 c 是常数。

4.4和差规则

4.5乘积规则

4.6商规则

其中 g(x)≠0。

4.7链式法则(复合函数求导):

5, 常见函数的求导公式

5.1指数函数

\dfrac{d}{dx}(e^{x})=e^{x}

其中 a>0且 a≠1。

5.2对数函数

其中 a>0且 a≠1。

5.3三角函数

5.4反三角函数

eg2

的导数

解:使用链式规则,将

所以

6,高阶导数

对于一个函数 f(x),其 n 阶导数定义为:

f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}}

其中 n是正整数。

7,隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出

\dfrac{dy}{dx}

7.1隐函数求导的基本步骤

1)对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。

2)使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数

3)通过求导得到的方程,解出 dy/dx。

eg3

x^{2}+y^{2}=1

的导数

解:

1.对方程两边分别求导:

\dfrac{d}{dx}(x^{2}+y^{2})=\dfrac{d1}{dx}=0

2.使用链式法则:

eg4

x^{3}+y^{3}=6xy

的导数

解:

1.对方程两边分别求导:

2.使用链式法则:

eg5

x-y+\dfrac{1}{2}siny=0

的二阶导数y''

解:

先求y'

再求y'':

8,参数方程求导

参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:

\begin{cases}x=f(t)\\ y=g(t)\end{cases}

其中 t 是参数。我们希望求出曲线的导数 dy/dx。

8.1参数方程求导的基本步骤

  1. 求 x 对 t 的导数:

  2. 求 y对 t 的导数:

  3. 求 dy/dx:

eg6

\begin{cases}x=t^{2}\\ y=t^{3}\end{cases}

的导数

解:

1.求 x 对 t 的导数:

2.求 y 对 t 的导数:

3.求dy/dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值