数学基础day1-高数-4不定积分

1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
$$
\int f(x) dx
$$
表示 f(x) 的所有原函数,通常写成:


$$
\int f(x) dx=F(x)+C
$$
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

2.基本积分公式

2.1常数积分:

$$
∫k dx=kx+C(其中 k 是常数)
$$

2.2幂函数积分:

$$
∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1)
$$

2.3指数函数积分:

$$
∫e^{x} dx=e^{x}+C
$$

$$
∫a^{x} dx=\dfrac{a^{x}}{ln⁡a}+C(其中 a>0 且 a≠1)
$$

2.4对数函数积分:

$$
∫\dfrac{1}{x} dx=ln⁡∣x∣+C
$$

2.5三角函数积分:

$$
∫sin⁡x dx=−cos⁡x+C
$$

$$
∫cos⁡x dx=sin⁡x+C
$$

2.6反三角函数积分:

$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsin⁡x+C
$$

$$
∫\dfrac{1}{1+x^{2}} dx=arctan⁡x+C
$$

eg1

$$
∫x^{2} dx
$$

使用幂函数积分公式:
$$
∫x^{2} dx=\dfrac{x^{2+1}}{2+1}+C=\dfrac{x^{3}}{3}+C
$$

1. **求解不定积分**:
   $$
   ∫e^{x} dx
   $$
   使用指数函数积分公式:
   $$
   ∫e^{x} dx=e^{x}+C
   $$

2. **求解不定积分**:
   $$
   ∫\dfrac{1}{x} dx
   $$
   使用对数函数积分公式:
   $$
   ∫\dfrac{1}{x} dx=ln⁡∣x∣+C
   $$

3.换元积分法

3.1,第一类换元积分法

1. 选择合适的变量替换:
   选择一个合适的变量替换 u=g(x),使得积分变得更简单。

2. 求导数:
   求 u 对 x 的导数 
   $$
   \dfrac{du}{dx}=g′(x)
   $$
   ,并将其改写为 
   $$
   du=g′(x) dx
   $$

3. 替换积分变量:
   将原积分中的 x 替换为 u,并将 dx 替换为 
   $$
   \dfrac{du}{g′(x)}
   $$

4. 求解新积分:
   求解新的积分 
   $$
   ∫f(u) du
   $$

5. 回代变量:
   将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

eg2


$$
\int 2cos2xdx
$$
解:

对2求原函数为:2x

将2x放到d里面:
$$
\int cos2xd2x=sin(2x)+C
$$

 eg3

求解不定积分 
$$
∫2xcos⁡(x^{2}) dx
$$
解:

将2x求原函数为
$$
x^{2}
$$
将之放到d里面:
$$
∫2xcos⁡(x^{2}) dx=∫cos⁡(x^{2}) dx^{2}=sin(x^{2})+C
$$

eg4

求解不定积分 
$$
∫\dfrac{x}{\sqrt{1+x^{2}}} dx
$$
解:

将x求原函数:
$$
x->\dfrac{1}{2}(x^{2}+1)
$$
将原函数放到d里面,常数留着:
$$
∫\dfrac{x}{\sqrt{1+x^{2}}} dx=∫\dfrac{1}{2}\dfrac{1}{\sqrt{1+x^{2}}} d(1+x^{2})=∫\dfrac{1}{2}(1+x^{2})^{-\dfrac{1}{2}}d(1+x^{2})=\dfrac{1}{2}\dfrac{(1+x^{2})^{\dfrac{1}{2}}}{\dfrac{1}{2}}=\sqrt{1+x^{2}}+C
$$

3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

1. 选择合适的变量替换:
   选择一个合适的变量替换 x=g(t),使得积分变得更简单。

2. 求导数:
   求 x 对 t 的导数 
   $$
   \dfrac{dx}{dt}=g′(t)
   $$
   ,并将其改写为 
   $$
   dx=g′(t) dt
   $$

3. 替换积分变量:
   将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

4. 求解新积分:
   求解新的积分
   $$
   ∫f(g(t))g′(t) dt
   $$

5. 回代变量:
   将 t 回代为 
   $$
   g^{−1}(x)
   $$
   ,得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

eg5 

$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx
$$

解:

将变量替换:
$$
x=sint,(-\dfrac{\pi}{2}< t < \dfrac{\pi}{2})
$$
求出dt
$$
dx=costdt
$$
带入不定积分:
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=∫\dfrac{1}{\sqrt{1−(sint)^{2}}}costdt=∫\dfrac{cost}{|cost|}dt
$$
因为
$$
(-\dfrac{\pi}{2}< t < \dfrac{\pi}{2})
$$
所以cost>=0,所以
$$
∫\dfrac{cost}{|cost|}dt=∫dt=t+C
$$
将t换回x:

x的反函数:
$$
t=arcsinx
$$
所以
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C
$$

 eg6


$$
\int \sqrt{a^{2}-x^{2}}dx
$$
解:

变量替换:
$$
x=asint,(-\dfrac{\pi}{2}\leq t \leq \dfrac{\pi}{2})
$$
这里是为了使x带入不定积分时便于计算。

对x求导:
$$
dx=acostdt
$$
带入不定积分:
$$
\int \sqrt{a^{2}-x^{2}}dx=\int \sqrt{a^{2}-(asint)^{2}}.acostdt=\int a^{2}cos^{2}tdt\\
=a^2\int (\dfrac{1+cos(2t)}{2})dt=\dfrac{a^{2}}{2}t+a^2\int \dfrac{cos(2t)}{4}d(2t)=\dfrac{a^{2}}{2}t+a^2\dfrac{sin(2t)}{4}+C=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C
$$
求反函数:
$$
t=arcsin(\dfrac{x}{a})
$$
所以
$$
\int \sqrt{a^{2}-x^{2}}dx=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C=\dfrac{a^{2}}{2}arcsin(\dfrac{x}{a})+\dfrac{x}{2}\sqrt{a^{2}-x^{2}}+C
$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值