1.定义
如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
$$
\int f(x) dx
$$
表示 f(x) 的所有原函数,通常写成:
$$
\int f(x) dx=F(x)+C
$$
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
2.基本积分公式
2.1常数积分:
$$
∫k dx=kx+C(其中 k 是常数)
$$
2.2幂函数积分:
$$
∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1)
$$
2.3指数函数积分:
$$
∫e^{x} dx=e^{x}+C
$$
$$
∫a^{x} dx=\dfrac{a^{x}}{lna}+C(其中 a>0 且 a≠1)
$$
2.4对数函数积分:
$$
∫\dfrac{1}{x} dx=ln∣x∣+C
$$
2.5三角函数积分:
$$
∫sinx dx=−cosx+C
$$
$$
∫cosx dx=sinx+C
$$
2.6反三角函数积分:
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C
$$
$$
∫\dfrac{1}{1+x^{2}} dx=arctanx+C
$$
eg1
$$
∫x^{2} dx
$$
使用幂函数积分公式:
$$
∫x^{2} dx=\dfrac{x^{2+1}}{2+1}+C=\dfrac{x^{3}}{3}+C
$$
1. **求解不定积分**:
$$
∫e^{x} dx
$$
使用指数函数积分公式:
$$
∫e^{x} dx=e^{x}+C
$$
2. **求解不定积分**:
$$
∫\dfrac{1}{x} dx
$$
使用对数函数积分公式:
$$
∫\dfrac{1}{x} dx=ln∣x∣+C
$$
3.换元积分法
3.1,第一类换元积分法
1. 选择合适的变量替换:
选择一个合适的变量替换 u=g(x),使得积分变得更简单。
2. 求导数:
求 u 对 x 的导数
$$
\dfrac{du}{dx}=g′(x)
$$
,并将其改写为
$$
du=g′(x) dx
$$
3. 替换积分变量:
将原积分中的 x 替换为 u,并将 dx 替换为
$$
\dfrac{du}{g′(x)}
$$
4. 求解新积分:
求解新的积分
$$
∫f(u) du
$$
5. 回代变量:
将 u 回代为 g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
eg2
求
$$
\int 2cos2xdx
$$
解:
对2求原函数为:2x
将2x放到d里面:
$$
\int cos2xd2x=sin(2x)+C
$$
eg3
求解不定积分
$$
∫2xcos(x^{2}) dx
$$
解:
将2x求原函数为
$$
x^{2}
$$
将之放到d里面:
$$
∫2xcos(x^{2}) dx=∫cos(x^{2}) dx^{2}=sin(x^{2})+C
$$
eg4
求解不定积分
$$
∫\dfrac{x}{\sqrt{1+x^{2}}} dx
$$
解:
将x求原函数:
$$
x->\dfrac{1}{2}(x^{2}+1)
$$
将原函数放到d里面,常数留着:
$$
∫\dfrac{x}{\sqrt{1+x^{2}}} dx=∫\dfrac{1}{2}\dfrac{1}{\sqrt{1+x^{2}}} d(1+x^{2})=∫\dfrac{1}{2}(1+x^{2})^{-\dfrac{1}{2}}d(1+x^{2})=\dfrac{1}{2}\dfrac{(1+x^{2})^{\dfrac{1}{2}}}{\dfrac{1}{2}}=\sqrt{1+x^{2}}+C
$$
3.2 第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
1. 选择合适的变量替换:
选择一个合适的变量替换 x=g(t),使得积分变得更简单。
2. 求导数:
求 x 对 t 的导数
$$
\dfrac{dx}{dt}=g′(t)
$$
,并将其改写为
$$
dx=g′(t) dt
$$
3. 替换积分变量:
将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。
4. 求解新积分:
求解新的积分
$$
∫f(g(t))g′(t) dt
$$
5. 回代变量:
将 t 回代为
$$
g^{−1}(x)
$$
,得到最终的不定积分结果。
简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。
eg5
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx
$$
解:
将变量替换:
$$
x=sint,(-\dfrac{\pi}{2}< t < \dfrac{\pi}{2})
$$
求出dt
$$
dx=costdt
$$
带入不定积分:
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=∫\dfrac{1}{\sqrt{1−(sint)^{2}}}costdt=∫\dfrac{cost}{|cost|}dt
$$
因为
$$
(-\dfrac{\pi}{2}< t < \dfrac{\pi}{2})
$$
所以cost>=0,所以
$$
∫\dfrac{cost}{|cost|}dt=∫dt=t+C
$$
将t换回x:
x的反函数:
$$
t=arcsinx
$$
所以
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C
$$
eg6
求
$$
\int \sqrt{a^{2}-x^{2}}dx
$$
解:
变量替换:
$$
x=asint,(-\dfrac{\pi}{2}\leq t \leq \dfrac{\pi}{2})
$$
这里是为了使x带入不定积分时便于计算。
对x求导:
$$
dx=acostdt
$$
带入不定积分:
$$
\int \sqrt{a^{2}-x^{2}}dx=\int \sqrt{a^{2}-(asint)^{2}}.acostdt=\int a^{2}cos^{2}tdt\\
=a^2\int (\dfrac{1+cos(2t)}{2})dt=\dfrac{a^{2}}{2}t+a^2\int \dfrac{cos(2t)}{4}d(2t)=\dfrac{a^{2}}{2}t+a^2\dfrac{sin(2t)}{4}+C=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C
$$
求反函数:
$$
t=arcsin(\dfrac{x}{a})
$$
所以
$$
\int \sqrt{a^{2}-x^{2}}dx=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C=\dfrac{a^{2}}{2}arcsin(\dfrac{x}{a})+\dfrac{x}{2}\sqrt{a^{2}-x^{2}}+C
$$