数学基础-概率论day2-2 多维随机变量及其分布(了解)

1.二维随机变量及其分布

假设E是随机试验,Ω是样本空间,X、Y是Ω的两个变量;(X,Y)就叫做二维随机变量或二维随机向量。X、Y来自同一个样本空间。

联合分布函数

$$
F(x,y)=P(X≤x,Y≤y)
$$

性质: (1)0≤F(x,y) ≤1

(2)F(x,y) 不减,例如:y固定,x1<x2,F(x1,y)<F(x2,y)

(3)F(-∞,y)=F(x,-∞)=F(-∞,-∞)=0,F(+∞,+∞)=1

(4)F(x,y)分别关于x和y右连续

(5)

$$
对于x_1<x_2,y_1<y_2\\ P(x_1<X≤x_2,y_1<Y≤y_2) = F(x_2,y_2) - F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)
$$

图形解释:

$$
P(x_1<X≤x_2,y_1<Y≤y_2)
$$

$$
F(x_2,y_2)
$$

表示图中蓝色区域

$$
F(x_2,y_1)
$$

表示红色区域

$$
F(x_1,y_2)
$$

表示黄色色区域

所以

$$
F(x_2,y_2) - F(x_2,y_1)-F(x_1,y_2)
$$

就是只有蓝色的区域

但是

$$
F(x_1,y_1)
$$

的区域在减的过程中被减掉了两次,需要补回来一次,所以:

$$
F(x_2,y_2) - F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)
$$

所表示的图形面积才是

$$
P(x_1<X≤x_2,y_1<Y≤y_2)
$$

所以:

$$
对于x_1<x_2,y_1<y_2\\ P(x_1<X≤x_2,y_1<Y≤y_2) = F(x_2,y_2) - F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)
$$

边缘分布

X的边缘分布:

$$
F_X(x) = P(X≤x) = F(x,+∞) = P(X≤x,Y<+∞)
$$

这表示在所有可能的 Y 值上,X 取值 x 的概率总和。从图形曲线上理解就是求小于x的所有点的面积,Y随意取值。

Y的边缘分布:

$$
F_Y(y) = P(Y≤y) = F(+∞,y) = P(X<+∞,Y≤y)
$$

表示在所有可能的 X 值上,Y 取值 y的概率总和。从图形曲线上理解就是求小于y的所有点的面积,X随意取值。

2.二维离散型随机变量的联合分布和边缘分布

联合概率质量函数 P(X=x,Y=y) 描述了随机变量 X 和 Y 同时取特定值 x 和y 的概率。联合PMF满足以下性质:

  1. 非负性:对于所有的 x 和 y,有 P(X=x,Y=y)≥0。

  2. 归一性:所有可能的 x 和 y 值的概率之和等于1,即:

    $$
    ∑_x∑_yP(X=x,Y=y)=1
    $$

概率分布表解释:

假设由一个概率分布表:

X\Y123
101/21/8
21/81/81/8

非负性表示分布表中的所有概率都要大于等于0。例如:

$$
P(X=1,Y=2)=\dfrac{1}{2}\geq 0\\ P(X=2,Y=2)=\dfrac{1}{8}\geq 0
$$

归一性表示分布表中所有概率之和等于1。

联合分布函数

$$
F(x,y)=P(X\leq x,Y\leq y)=∑_{x_i\leq x}∑_{y_j\leq y}P(X=x,Y=y)
$$

概率分布表解释:

F(x,y)的值就是在分布表中找到对应的(x,y)对应的位置,然后将其左上角的概率相加。

例如:

$$
F(1,2)=P(X\leq 1,Y\leq 2)=P(1,1)+P(1,2)=0+\dfrac{1}{2}=\dfrac{1}{2}\\ F(2,2)=P(X\leq 2,Y\leq 2)=P(1,1)+P(1,2)+P(2,1)+P(2,2)=0+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{8}=\dfrac{3}{4}
$$

边缘分布

边缘概率质量函数可以通过对联合PMF的适当求和得到。

  1. 边缘PMF

    $$
    P_X(x)
    $$

     

    :表示随机变量 X 取特定值 x 的概率,不考虑 Y的值。计算方法为:

    $$
    P_X(x)=∑_yP(X=x,Y=y)
    $$

     

    其中,求和是对所有可能的 y 值进行。

  2. 边缘PMF

    $$
    P_Y(y)
    $$

     

    :表示随机变量 Y取特定值 y 的概率,不考虑 X 的值。计算方法为:

    $$
    P_Y(y)=∑_xP(X=x,Y=y)
    $$

     

    其中,求和是对所有可能的 x 值进行。

概率分布表解释:

对行求和,得到对X的边缘分布。

对列求和,得到对Y的边缘分布。

例如:

X\Y123
101/21/8
21/81/81/8

求X的边缘分布:

X12
P5/83/8

当X=1时,求该行的概率之和,即:0+1/2+1/8=5/8

以此类推。

求Y的边缘分布:

Y123
P1/85/81/4

当Y=1时,求该列的概率之和,即0+1/8=1/8

以此类推。

3.二维连续随机变量的联合密度和边缘密度函数

对于二维连续随机变量 X 和 Y,其分布函数为:

$$
F(x,y) = P(X≤x,Y≤y) = ∫_{-∞}^x∫_{-∞}^yf(s,t)dsdt
$$

则F(x,y)是分布函数,f(x,y)是联合密度函数。

f(x,y)的性质:

  1. 非负性:对于所有的 x 和 y,有 f(x,y)≥0。

  2. 归一性:在整个 x 和 y 的取值范围上的积分等于1,即:

    $$
    ∫_{-\infty}^{+\infty}∫_{-\infty}^{+\infty}f(x,y) dxdy=1
    $$

     

    这个积分是对所有可能的 x 和 y 值进行的。

例子

假设联合密度函数:

$$
f(x,y)=\begin{cases} e^{-(x+y)}, & x>0,y>0\\ 0,& 其它 \end{cases}
$$

求分布函数F(x,y)

解:

根据分布函数可知:

$$
F(x,y) = P(X≤x,Y≤y) = ∫_{-∞}^x∫_{-∞}^yf(s,t)dsdt
$$

当x>0且y>0时

$$
∫_{-∞}^x∫_{-∞}^yf(s,t)dsdt=∫_{0}^x∫_{0}^ye^{-(s+t)}dsdt=∫_{0}^xe^{-s}ds∫_{0}^ye^{-t}dt=(1-e^{-x})(1-e^{-y})
$$

当x,y有一个小于0时

$$
F(x,y) = P(X≤x,Y≤y) = ∫_{-∞}^x∫_{-∞}^yf(s,t)dsdt=0
$$

所以

$$
F(x,y)=\begin{cases} (1-e^{-x})(1-e^{-y}), & x>0,y>0\\ 0,& 其它 \end{cases}
$$

边缘密度函数

边缘分布函数:

$$
F_X(x)=F(x,+\infty)=\int _{-\infty}^x[\int _{-\infty}^{+\infty}f(s,t)dt]ds
$$

求导,得出边缘密度函数:

$$
f_X(x)=\int _{-\infty}^{+\infty}f(x,t)dt=\int _{-\infty}^{+\infty}f(x,y)dy\\ f_Y(y)=\int _{-\infty}^{+\infty}f(s,y)ds=\int _{-\infty}^{+\infty}f(x,y)dx
$$

求X的边缘密度函数就是对y求积分,对Y的边缘密度函数就是对x求积分。

例子

假设联合密度函数:

$$
f(x,y)=\dfrac{1}{\pi^2(1+x^2)(1+y^2)}
$$

求边缘密度函数。

解:

对X的边缘密度函数:

$$
f_X(x)=\int _{-\infty}^{+\infty}f(x,y)dy=\int _{-\infty}^{+\infty}\dfrac{1}{\pi^2(1+x^2)(1+y^2)}dy\\ =\dfrac{1}{\pi^2(1+x^2)}\int _{-\infty}^{+\infty}\dfrac{1}{(1+y^2)}dy=\dfrac{1}{\pi^2(1+x^2)}\int _{-\infty}^{+\infty}arctan(y)|_{-\infty}^{+\infty}=\dfrac{1}{\pi(1+x^2)}
$$

对Y的边缘密度函数:

$$
f_Y(y)=\int _{-\infty}^{+\infty}f(x,y)dy=\dfrac{1}{\pi(1+y^2)}
$$

4.条件分布

条件分布是指在已知另一个随机变量或事件的条件下,该随机变量的概率分布。

$$
F(x|A)=P(X\leq x | A)
$$

例子

假设概率密度函数

$$
f(x)=\dfrac{1}{\pi(1+x^2)}
$$

求在X>1的条件下f(x)的条件分布函数

解:

$$
F(x|X>1)=P(X\leq x|X>1)
$$

当x≤1时:

不满足条件

$$
F(x|X>1)=0
$$

当x>1时:

$$
F(x|X>1)=P(X\leq x|X>1)=\dfrac{P(X\leq x,X>1)}{P(X>1)}
$$

计算分子:

$$
P(X\leq x,X>1)=P(1\leq X\leq x)=\int _1^x\dfrac{1}{\pi(1+x^2)}dx=\dfrac{1}{\pi}arctan(x)|_1^x=\dfrac{arctanx}{\pi}-\dfrac{1}{\pi}.\dfrac{\pi}{4}=\dfrac{arctanx}{\pi}-\dfrac{1}{4}
$$

计算分母:

$$
P(X>1)=\int _1^{+\infty}\dfrac{1}{\pi(1+x^2)}dx=\dfrac{1}{\pi}arctan(x)|_1^{+\infty}=\dfrac{1}{\pi}.(\dfrac{\pi}{2}-\dfrac{\pi}{4})=\dfrac{1}{4}
$$

$$
F(x|X>1)=\dfrac{P(X\leq x,X>1)}{P(X>1)}=\dfrac{4arctanx}{\pi}-1
$$

所以在X>1的条件下f(x)的条件分布函数

$$
F(x|X>1)=\begin{cases} \dfrac{4arctanx}{\pi}-1, & x>1\\ 0,& x≤1 \end{cases}
$$

5.离散型随机变量的条件分布

条件概率质量函数定义为:

$$
P(X=x∣Y=y)=\dfrac{P(X=x,Y=y)}{P(Y=y)}
$$

其中 P(X=x,Y=y)是 X 和 Y的联合概率质量函数,P(Y=y) 是 Y 的边缘概率质量函数。

从分布表来理解:

假设概率分布表:

X\Y01
00.10.3
10.30.3

P(Y=y) 是 Y 的边缘概率质量函数,Y 的边缘概率质量函数是对列求和:

Y01
P0.40.6

那么在Y=1的条件下,假设x=0,X=x的概率为:

$$
P(X=0∣Y=1)=\dfrac{P(X=0,Y=1)}{P(Y=1)}=\dfrac{0.3}{0.6}=0.5
$$

假设x=1,X=x的概率为:

$$
P(X=1∣Y=1)=\dfrac{P(X=1,Y=1)}{P(Y=1)}=\dfrac{0.3}{0.6}=0.5
$$

则在Y=1的条件下,X的分布函数为:

X01
P(X|Y=1)0.30.3

其它情况如Y=0条件下X的分布函数、X=0及X=1条件下Y的分布函数同上。

6.连续型随机变量的条件分布

在Y=y条件下,条件概率密度函数为:

$$
f(x∣y)=\dfrac{f(x,y)}{f_Y(y)}
$$

其中 f(x,y) 是 X 和 Y 的联合概率密度函数,

$$
f_Y(y)
$$

是 Y的边缘概率密度函数。

同理,在X=x条件下,条件概率密度函数为:

$$
f(y∣x)=\dfrac{f(x,y)}{f_X(x)}
$$

其中 f(x,y) 是 X 和 Y 的联合概率密度函数,

$$
f_X(x)
$$

是 X的边缘概率密度函数。

在Y=y的条件下,X的条件分布函数:

$$
F(x|y)=\int _{-\infty}^xf(x∣y)dx=\int _{-\infty}^x\dfrac{f(u,y)}{f_Y(y)}du
$$

在X=x的条件下,Y的条件分布函数:

$$
F(y|x)=\int _{-\infty}^yf(y∣x)dy=\int _{-\infty}^y\dfrac{f(x,v)}{f_X(x)}dv
$$

例子

假设

$$
f(x,y)=\dfrac{1}{\pi^2(1+x^2)(1+y^2)},f_X(x)=\dfrac{1}{\pi(1+x^2)},f_Y(y)=\dfrac{1}{\pi(1+y^2)}
$$

在Y=y的条件下,X的条件密度函数;在X=x的条件下,Y的条件密度函数。

解:

$$
f(x|y)=\dfrac{f(x,y)}{f_Y(y)}=\dfrac{\pi(1+y^2)}{\pi^2(1+x^2)(1+y^2)}=\dfrac{1}{\pi(1+x^2)}\\ f(y|x)=\dfrac{f(x,y)}{f_X(x)}=\dfrac{\pi(1+x^2)}{\pi^2(1+x^2)(1+y^2)}=\dfrac{1}{\pi(1+y^2)}
$$

7.随机变量的独立性

定义

两个随机变量 XX 和 YY 被称为独立的,如果它们满足以下条件:

对于连续型随机变量:它们的联合概率密度函数f(x,y)可以表示为各自边缘概率密度函数的乘积:

$$
f(x,y)=f_X(x)⋅f_Y(y)
$$

对于离散型随机变量:它们的联合概率质量函数P(X=x,Y=y)可以表示为各自边缘概率质量函数的乘积:

$$
P(X=x,Y=y)=P(X=x)⋅P(Y=y)
$$

例子

1.假设我们有两个公平的六面骰子,我们分别将它们记为骰子A和骰子B。

随机变量定义为:

让 X 表示骰子A的结果。

让 Y 表示骰子B的结果。

事件:

事件 A:"骰子A显示的数字大于3"。

事件 B:"骰子B显示的数字是偶数"。

问事件A和B是否独立。

解:

联合概率分布表:

X\Y123456
11\361\361\361\361\361\36
21\361\361\361\361\361\36
31\361\361\361\361\361\36
41\361\361\361\361\361\36
51\361\361\361\361\361\36
61\361\361\361\361\361\36

X的边缘概率分布表:

X123456
P1/61/61/61/61/61/6

Y的边缘概率分布表:

Y123456
P1/61/61/61/61/61/6

事件A的概率:

$$
P(A)=P(X>3)=P(X=4)+P(X=5)+P(X=6)=1/2
$$

事件B的概率:

$$
P(B)=P(Y=2)+P(Y=4)+P(Y=6)=1/2
$$

事件A和B的联合概率:

$$
P(AB)=P(X=4,Y=2)+P(X=4,Y=4)+P(X=4,Y=6)\\ +P(X=5,Y=2)+P(X=5,Y=4)+P(X=5,Y=6)\\ +P(X=6,Y=2)+P(X=6,Y=4)+P(X=6,Y=6)=1/4
$$

所以

$$
P(AB)=P(A)P(B)=1/4
$$

所以A、B事件是独立的。

2.假设经理8-12点到公司,秘书7-9点到公司,经理和秘书到公司的事件是独立的,求经理和秘书到公司的联合概率。

解:

设X是经理到公司的事件,Y为秘书到公司的事件,则:X、Y的密度函数服从均匀分布。

$$
f(x)=\begin{cases} \dfrac{1}{4},& 8<x<12\\ 0, & 其它 \end{cases}
$$

$$
f(y)=\begin{cases} \dfrac{1}{2},& 7<y<9\\ 0, & 其它 \end{cases}
$$

由于X、Y是独立的,则联合密度函数:

$$
f(x,y)=f(x)f(y)=\begin{cases} \dfrac{1}{8},& 8<x<12,7<y<9\\ 0, & 其它 \end{cases}
$$

8.二维随机变量函数的分布

8.1 二维离散型随机变量函数的分布

二维离散型随机变量函数的分布指的是在给定两个离散型随机变量 X 和 Y的情况下,它们函数 Z=g(X,Y)的分布。这里

g(X,Y)是一个定义在 X和 Y取值范围内的函数。

要找到函数 Z 的分布,我们需要确定 Z 的每一个可能值的概率。具体步骤如下:

  1. 确定函数的输出值:列出函数 Z=g(X,Y)可能的所有输出值。

  2. 计算每个输出值的概率:对于每一个可能的输出值 z,计算 Z=z的概率。这通常涉及到对 X 和 Y的联合概率质量函数 P(X=x,Y=y)进行求和。

  3. 构建概率质量函数:构建函数 Z 的概率质量函数,即对于每一个可能的 z,确定 P(Z=z)。

例子

假设有两个离散型随机变量 XX 和 YY,它们的联合PMF如下表所示:

X \ Y123
10.10.20.0
20.00.30.0
30.10.10.2

求函数 Z=X+Y。

解:

  1. 确定函数的输出值:列出所有可能的 X 和 Y组合的和。

    1+1=2

    1+2=3

    1+3=4

    2+2=4

    2+3=5

    3+3=6

    所以,Z 可能的值是 2, 3, 4, 5, 6。

  2. 计算每个输出值的概率

    P(Z=2)=P(X=1,Y=1)=0.1

    P(Z=3)=P(X=1,Y=2)+P(X=2,Y=1)=0.2

    P(Z=4)=P(X=1,Y=3)+P(X=2,Y=2)+P(X=3,Y=1)=0.0+0.3+0.1=0.4

    P(Z=5)=P(X=2,Y=3)+P(X=3,Y=2)=0.1

    P(Z=6)=P(X=3,Y=3)=0.2

  3. 构建概率质量函数

    P(Z=2)=0.1

    P(Z=3)=0.2

    P(Z=4)=0.4

    P(Z=5)=0.1

    P(Z=6)=0.2

  4. 函数分布表为:

    Z23456
    P0.10.20.40.10.2

以上的解法比较麻烦,可以根据分布表来计算。

1.根据Z=X+Y,将X的每行分别于Y的每列分别相加,得到Z的取值,再按X、Y在表格中对应的单元格中的值照抄过来,得到:

Z234345456
P0.10.20.00.00.30.00.10.10.2

2.合并Z中重复的值及对应的概率,即概率相加:

Z23456
P0.10.20.40.10.2

8.2 二维连续型随机变量函数的分布

二维连续型随机变量函数的分布是指由两个连续型随机变量 (X,Y)构成的联合分布,并通过某种函数关系 Z=g(X,Y)得到一个新的随机变量 Z

的分布。

假设 (X,Y)是一个二维连续型随机变量,其联合概率密度函数为 f(x,y)。设 Z=g(X,Y) 是一个函数关系,其中 g 是一个已知的函数。我们需要

找到 Z 的概率密度函数

$$
f_Z(z)
$$

具体步骤如下:

  1. 计算 Z的累积分布函数

    $$
    F_Z(z)
    $$

     

    $$
    F_Z(z)=P(Z≤z)=P(g(X,Y)≤z)
    $$

     

    这可以通过对联合分布函数进行积分得到:

    $$
    F_Z(z)=∬_{g(x,y)≤z}f(x,y) dx dy
    $$

  2. 求导得到概率密度函数

    $$
    f_Z(z)
    $$

     

    $$
    f_Z(z)=\dfrac{d}{dz}F_Z(z)
    $$

对于某些特定的函数 g(X,Y),可以直接求出 Z 的概率密度函数。例如,如果 g(X,Y)=X+Y,则可以通过以下步骤求出 Z 的概率密度函数:

  1. 确定 Z 的范围:

    Z=X+Y 确定 Z 的可能取值范围。

  2. 计算 Z的概率密度函数:

    $$
    f_Z(z)=∫_{−∞}^∞f_X(x)f_Y(z−x)dx
    $$

     

    这称为卷积公式。

例子

假设 (X,Y) 的联合概率密度函数为:

$$
f(x, y) = \begin{cases} 2, & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases}
$$

求Z=X+Y的分布

解:

确定Z的范围:

$$
0\leq Z \leq 2
$$

先求分布函数:

$$
F_Z(z)=P(Z≤z)=∬_{g(x,y)≤z}f(x,y) dx dy
$$

当z<0时,因为x、y都大于0,所以事件不可能发生

$$
F_Z(z)=0
$$

当0≤z≤1时,画出图形:

根据图形可知

$$
0≤x≤z,0≤y≤z-x
$$

$$
F_Z(z)=P(Z≤z)=∬_{g(x,y)≤z}f(x,y) dx dy=\int_0^zdx\int_0^{z-x}2dy=2\int_0^z(z-x)dx=2(zx-\dfrac{1}{2}x^2)|_0^z=z^2
$$

当1≤z≤2时,画出图形:

根据图形可知:

所求面积=1-右上角三角形面积S

$$
S=\dfrac{(2-z)^2}{2}
$$

$$
F_Z(z)=P(Z≤z)=∬_{g(x,y)≤z}f(x,y) dx dy=1-\dfrac{(2-z)^2}{2}
$$

当z>2时,超出x、y的取值范围,不可能发生

$$
F_Z(z)=0
$$

所以:

$$
F_Z(z)=\begin{cases} z^2,& 0\leq z\leq 1\\ 1-\dfrac{(2-z)^2}{2},& 1\leq z\leq 2\\ 0,& 其它 \end{cases}
$$

求导:

$$
f_Z(z)=F_z'(z)=\begin{cases} 2z,& 0\leq z\leq 1\\ 2 -z,& 1\leq z\leq 2\\ 0,& 其它 \end{cases}
$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值