day11-经典神经网络MobileNet V1&V2&V3
一、MobileNet V1
1 网络简介
传统的卷积神经网络参数量大,导致预测时算力大,对于手机、嵌入式等移动设备来讲部署慢且占用空间,无法满足需求。
2017年,Google提出的移动端高效率模型MobileNet:相比VGG16,分类准确率下降了0.9%,但是模型参数仅仅是VGG16的1/32到1/33。
2 网络创新
2.1 Depth wise Convolution深度可分离卷积
DW卷积核的通道等于1,每个卷积核分别与输入特征每个channel进行卷积计算,从而得到输出特征矩阵的每个channel,总结:输入特征的channel = 卷积核个数 = 输出特征channel。
计算量相比于标准卷积降低了1个数量级,但没有有效利用不同通道在相同空间位置上的信息,鉴于此,我们需要再加一个PW卷积(Pointwise Conv,点卷积,大小1×1)
2.2常规卷积与DW卷积对比
3 整体结构
4 压缩比较
模型参数量与计算量压缩比较:
通常DW卷积和PW卷积是放在一起的,这种卷积比普通卷积能节省大量的计算量,论文中有相关公式求解计算量:分子为深度可分卷积的计算量,分母为普通卷积的计算量(步距默认为1):DW负责特征提取,PW负责特征融合
5 MobileNet 大小控制
Width multiplier 系数α:按比例减少通道数 Resolution multiplier 系数ρ:按比例降低特征图的大小
5.1宽度系数
Width multiplier系数α取值范围为(0,1],计算公式公式:
$$
D_K\cdot D_K\cdot\alpha M\cdot D_F\cdot D_F+\alpha M\cdot\alpha N\cdot D_F\cdot D_F
$$
$$
常取值为1,0.25,0.5,0.75,计算量与参数量大概按着\alpha^2比例下降。
$$
5.2分辨率系数
Resolution multiplier系数ρ取值范围为(0,1],计算公式如下:
$$
D_K\cdot D_K\cdot\alpha M\cdot\rho D_F\cdot\rho D_F+\alpha M\cdot\alpha N\cdot\rho D_F\cdot\rho D_F
$$