链接:
https://www.nowcoder.com/acm/contest/93/K
来源:牛客网
来源:牛客网
题目描述
wyh学长特别喜欢斐波那契数列,F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n>=2)
一天他突发奇想,想求F(a^b)%c
输入描述:
输入第一行一个整数T(1<=T<=100),代表测试组数 接下来T行,每行三个数 a,b,c (a,b<=2^64) (1<c<1000)
输出描述:
输出第a^b项斐波那契数对c取余的结果
示例1
输入
3 1 1 2 2 3 1000 32122142412412142 124124124412124 123
输出
1 21 3
这题目很坑,数据输入要用llu,unsigned long long ,找到循环节,然后快速幂就可以求解了
循环节应用f[i-1]==0&&f[i]==1,那么到达i-1就是循环节,也就是循环长度
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long LL;
LL t,a,b,c,xun;
LL quickk(LL a,LL b)
{
LL ans=1;
a=a%xun;
while(b>0)
{
if(b&1)
{
ans=(ans*a)%xun;
}
b>>=1;
a=(a*a)%xun;
}
return ans;
}
LL f[1000100];
int main()
{
LL t;
scanf("%lld",&t);
while(t--)
{
int i;
f[0]=0;
f[1]=1;
scanf("%llu%llu%llu",&a,&b,&c);
for(i=2; i<=1000100; i++)
{
f[i]=(f[i-1]+f[i-2])%c;
if(f[i-1]==0&&f[i]==1)
{
xun=i-1;
break;
}
}
printf("%llu\n",f[quickk(a,b)]);
}
return 0;
}