Python爬取新浪国内新闻课程设计实验报告(附代码)

1 引言

1.1 研究背景

自从大数据的概念被提出后,互联网数据成为了越来越多的科研单位进行数据挖掘的对象。网络新闻数据占据了互联网数据的半壁江山,相比传统媒体,其具有传播迅速、曝光时间短、含有网民舆论等相关特征,其蕴含的价值也愈来愈大。网络数据正成为潜在宝藏,大量商业信息、社会信息以文本等存储在网页中,这些具有相当大价值的信息不同于传统的结构化数据,属于非结构化数据,需要我们使用一定的技术和方法将其转化为计算机能够理解的特征信息,然后我们才能对其进行分析。

网络爬虫技术是近些年来成熟并流行起来的一项技术。现阶段研究通常集中在各种不同领域下的运用。其通俗的来说就是通过模拟客户端(各种浏览器)发送网络请求,以获取服务端的响应,并按照规则提取指定数据的程序。

利用相关网络爬虫技术与算法,实现网络媒体新闻数据自动化采集与结构化存储,并利用中文分词算法和中文相似度分析算法进行一些归纳整理,得出相关的新闻发展趋势,体现网络新闻数据的挖掘价值。

这里我们采用python爬虫提取新浪网站国内新闻,通过文本进行分析。

1.2 功能与要求

目的:熟悉Python网页爬取方法。分析新浪国内新闻首页页面组织,利用urllib及Beautifulsoup爬取新浪国内新闻。

实现功能:

1. 爬取至少20条新闻。

2. 获取其中一条新闻的具体内容。

3. 获取20条新闻的具体内容,并以单独的文本文档格式进行存储。

1.3 需求分析

1、确定目标网站和数据

在开始爬取新闻数据之前,首先需要确定目标网站和要抓取的数据。本次设计选取新浪新闻网站作为目标网站定要抓取的数据类型新闻标题、具体新闻内容等。

2、使用Python编写爬虫代码

Python提供了丰富的库和工具,用于编写爬虫代码。可以使用第三方库如Requests和BeautifulSoup,或者更高级的工具如Scrapy来构建和运行爬虫。本次实验使用urllib.requestBeautifulSoupos和json模块来进行。

3、数据清洗和处理

在获取到新闻数据后,可能需要进行一些数据清洗和处理,以便于后续的分析。这包括去除无关数据、处理重复项、格式化日期等操作,以确保数据的准确性和一致性。

4、结果可视化

为了更好地理解和展示本次实验的结果,我们采用生成文件夹来存储获取到的含有具体新闻内容的txt文本文件。

使用Python编写爬虫抓取和分析新闻数据,是一项非常有用的技能。通过构建爬虫,并利用Python的数据处理,我们可以快速地获取并分析新闻数据,了解公众的舆情态度。这对于企业的营销决策、舆论危机的处理以及个人的信息收集等方面都具有重要意义。

2 方案设计

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值