多重背包+单调队列优化

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 48043 Accepted Submission(s): 20489


Problem Description
急!灾区的食物依然短缺!
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。
请问:你用有限的资金最多能采购多少公斤粮食呢?


Input
输入数据首先包含一个正整数 C C C,表示有 C C C组测试用例,每组测试用例的第一行是两个整数 n n n m ( 1 < = n < = 100 , 1 < = m < = 100 ) m(1<=n<=100, 1<=m<=100) m(1<=n<=100,1<=m<=100),分别表示经费的金额和大米的种类,然后是m行数据,每行包含3个数p,h和 c ( 1 < = p < = 20 , 1 < = h < = 200 , 1 < = c < = 20 ) c(1<=p<=20,1<=h<=200,1<=c<=20) c(1<=p<=20,1<=h<=200,1<=c<=20),分别表示每袋的价格、每袋的重量以及对应种类大米的袋数。

Output
对于每组测试数据,请输出能够购买大米的最多重量,你可以假设经费买不光所有的大米,并且经费你可以不用完。每个实例的输出占一行。


Sample Input
1
8 2
2 100 4
4 100 2

Sample Output
400


解题思路
分析:其实这就是多重背包,但会发现用最赤裸裸的方法是过不了的,连二进制优化也都不行。那下面就来介绍一下用单调队列来实现的时间复杂度为 O ( n m ) O(nm) O(nm)的多重背包。
在这里插入图片描述

很显然前两个循环是少不了的,那么我们来想如何去掉第三个循环,从而使时间复杂度变为我们想要的 O ( n m ) O(nm) O(nm)

w [ i ] w[i] w[i]表示物品重量, v [ i ] v[i] v[i]表示价值, c [ i ] c[i] c[i]表示数量,我们知道朴素状态转移方程:
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ) f[i][j] = max(f[i][j],f[i-1][j-k*w[i]] + k*v[i]) f[i][j]=max(f[i][j],f[i1][jkw[i]]+kv[i]) ( 1 < = k < = c [ i ] ) (1 <= k <= c[i]) (1<=k<=c[i]) 这里的 k k k 是指取第 i i i 种物品 k k k 件。

如果令 a = j / w [ i ] a = j / w[i] a=j/w[i] (a为最多能选多少个i物品), b = j %w[i] 那么 j = a ∗ w [ i ] + b j = a * w[i] + b j=aw[i]+b.
这里用 k k k 表示的意义改变, k k k 表示取第 i i i 种物品的件数比 a a a 少几件。

现在我们枚举 b b b,也就是余数,我们按余数来分层,不同层之间不能相互转移。
那么 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ b + k ∗ w [ i ] ] − k ∗ v [ i ] ) + a ∗ v [ i ] ) f[i][j] = max(f[i][j] ,f[i-1][b+k*w[i]] - k*v[i]) + a*v[i]) f[i][j]=max(f[i][j],f[i1][b+kw[i]]kv[i])+av[i])
可以发现, f [ i − 1 ] [ b + k ∗ w [ i ] ] − k ∗ v [ i ] f[i-1][b+k*w[i]] - k*v[i] f[i1][b+kw[i]]kv[i] 只与 k k k 有关,而这个 k k k是一段连续的。我们要做的就是求出 f [ i − 1 ] [ b + k ∗ w [ i ] ] − k ∗ v [ i ] f[i-1][b+k*w[i]] - k*v[i] f[i1][b+kw[i]]kv[i] k k k 取可行区间内时的最大值。


代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int t,n,m,w,v,s,h,T,c,f[10010],q[10010],num[10010];
int main(){
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&m,&n);
		for(int i=1;i<=n;i++)
		{
			scanf("%d%d%d",&w,&v,&s);
			s=min(s,m/w);
			for(int d=0;d<w;d++)//为前文的b,也就是余数
			{
				h=1,t=1;
				for(int j=0;j<=(m-d)/w;j++)//为前文的k
				{
					int y=f[j*w+d]-v*j;
					while(h<t&&q[t-1]<=y)--t;
					q[t]=y,num[t++]=j;
					while(h<t&&j-num[h]>s)++h;
					f[j*w+d]=max(f[j*w+d],q[h]+v*j);
				}
			}
		}
		printf("%d\n",f[m]);
		memset(f,0,sizeof(f));
		memset(q,0,sizeof(q));
		memset(num,0,sizeof(num));
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值