基本概念
介绍
学卡特兰数我觉得可能比组合数要难一点,因为组合数可以很明确的告诉你那个公式是在干什么,而卡特兰数却像是在用大量例子来解释什么时卡特兰数
这里,我对卡特兰数做一点自己的理解
卡特兰数是一个在组合数学里经常出现的一个数列,它并没有一个具体的意义,却是一个十分常见的数学规律
对卡特兰数的初步理解:有一些操作,这些操作有着一定的限制,如一种操作数不能超过另外一种操作数,或者两种操作不能有交集等,这些操作的合法操作顺序的数量
为了区分组合数,这里用fn表示卡特兰数的第n项
从零开始,卡特兰数的前几项为
1
,
1
,
2
,
5
,
14
,
42
,
132
,
429
,
1430
,
4862
,
16796
,
58786
,
208012
,
742900
,
2674440
,
9694845
,
35357670
,
129644790
…
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790…
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790…
定义
递归定义
f n = f 0 ∗ f n − 1 + f 1 ∗ f n − 2 + … + f n − 1 f 0 fn=f0∗fn−1+f1∗fn−2+…+fn−1f0 fn=f0∗fn−1+f1∗fn−2+…+fn−1f0,其中 n ≥ 2 n≥2 n≥2
递推关系
f n = 4 n − 2 n + 1 f n − 1 f_n=\frac{4n−2}{n+1}fn−1 fn=n+14n−2fn−1
通项公式
f n = 1 n + 1 C 2 n n fn=\frac{1}{n+1}C_{2n}^n fn=n+11C2nn
经化简后可得
f n = C 2 n n − C 2 n n − 1 fn=C_{2n}^n−C_{2n}^{n-1} fn=C2nn−C2nn−1
只要我们在解决问题时得到了上面的一个关系,那么你就已经解决了这个问题,因为他们都是卡特兰数列
实际问题
先用一个最经典的问题来帮助理解卡特兰数
去掉了所有的掩饰,将问题直接写出来就是
例题1
在一个w×h的网格上,你最开始在(0,0)上,你每个单位时间可以向上走一格,或者向右走一格,在任意一个时刻,你往右走的次数都不能少于往上走的次数,问走到(n,m),0≤n有多少种不同的合法路径。
合法路径个数为
f
n
=
C
2
n
n
−
C
2
n
n
−
1
fn=C_{2n}^n−C_{2n}^{n-1}
fn=C2nn−C2nn−1
直接求不好,考虑求有多少种不合法路径
路径总数为在2n次移动中选n次向上移动,即Cn2n
画一下图,我们把y=x+1这条线画出来,发现所有的合法路径都是不能碰到这条线的,碰到即说明是一条不合法路径
先随便画一条碰到这条线的不合法路径,所有的不合法路径都会与这条线有至少一个交点,我们把第一个交点设为(a,a+1)
如图
我们把
(
a
,
a
+
1
)
(a,a+1)
(a,a+1)之后的路径全部按照
y
=
x
+
1
y=x+1
y=x+1这条线对称过去
这样,最后的终点就会变成
(
n
−
1
,
n
+
1
)
(n−1,n+1)
(n−1,n+1)
由于所有的不合法路径一定会与
y
=
x
+
1
y=x+1
y=x+1有这么一个交点
我们可以得出,所有不合法路径对称后都唯一对应着一条到
(
n
−
1
,
n
+
1
)
(n−1,n+1)
(n−1,n+1)的路径
且所有到
(
n
−
1
,
n
+
1
)
(n−1,n+1)
(n−1,n+1)的一条路径都唯一对应着一条不合法路径(只需将其对称回去即可)
所以不合法路径总数是
C
n
−
12
n
Cn−12n
Cn−12n
那么合法的路径总数为 C n 2 n − C n − 12 n Cn2n−Cn−12n Cn2n−Cn−12n
这是一个非常好用且重要的一个方法,其它的问题也可以用该方法解决
即找到不合法路径唯一对应的到另一个点的路径
如网格计数
01序列
你现在有n个0和n个1,问有多少个长度为2n的序列,使得序列的任意一个前缀中1的个数都大于等于0的个数
例如n=2时
有
1100
,
1010
1100,1010
1100,1010两种合法序列
而
1001
,
0101
,
0110
,
0011
1001,0101,0110,0011
1001,0101,0110,0011都是不合法的序列
合法的序列个数为 C n 2 n − C n − 12 n Cn2n−Cn−12n Cn2n−Cn−12n
我们把出现一个1看做向右走一格,出现一个1看做向上走一格,那么这个问题就和上面的例题1一模一样了
拓展
如果是
n
个
1
,
m
个
0
n个1,m个0
n个1,m个0呢?
不过是最后的终点变为了
(
n
,
m
)
(n,m)
(n,m)罢了
如果是1的个数不能够比m少k呢
我们只需将
y
=
x
+
1
y=x+1
y=x+1这条线上下移动即可
括号匹配
你有n个左括号,n个右括号,问有多少个长度为2n的括号序列使得所有的括号都是合法的
合法的序列个数为 C n 2 n − C n − 12 n Cn2n−Cn−12n Cn2n−Cn−12n
要使所有的括号合法,实际上就是在每一个前缀中左括号的数量都不少于右括号的数量
将左括号看做1,右括号看做0,这题又和上面那题一模一样了
进出栈问题
有一个栈,我们有2n次操作,n次进栈,n次出栈,问有多少中合法的进出栈序列
合法的序列个数为 C n 2 n − C n − 12 n Cn2n−Cn−12n Cn2n−Cn−12n
要使序列合法,在任何一个前缀中进栈次数都不能少于出栈次数…
后面就不用我说了吧,和上面的问题又是一模一样的了
312排列
一个长度为n的排列a,只要满足
i
<
j
<
k
i<j<k
i<j<k且
a
j
<
a
k
<
a
i
aj<ak<ai
aj<ak<ai就称这个排列为312排列
求n的全排列中不是312排列的排列个数
答案也是卡特兰数
我们考虑312排列有什么样的特征
如果考虑一个排列能否被1,2,3,…,n−1,n排列用进栈出栈来表示
那么312排列就是所有不能被表示出来的排列
那么这个问题就被转化成进出栈问题了
不相交弦问题
在一个圆周上分布着 2n个点,两两配对,并在这两个点之间连一条弦,要求所得的2n条弦彼此不相交的配对方案数
当n=4时,一种合法的配对方案为如图
合法的序列个数为Cn2n−Cn−12n
这个问题没有上面的问题那么显然,我们规定一个点为初始点,然后规定一个方向为正方向
如规定最上面那个点为初始点,逆时针方向为正方向
然后我们把一个匹配第一次遇到的点(称为起点)旁边写一个左括号(,一个匹配第二次遇到的点(称为终点)旁边写一个右括号)
如图
看出来吗,在规定了这样的一个顺序后,在任意一个前缀中起点的个数都不能少于终点的个数
于是这又是一个卡特兰数列了
二叉树的构成问题
有n个点,问用这n个点最终能构成多少二叉树
答案仍然是卡特兰数列
这个问题不是用上面的方法,是用递归定义的卡特兰数
一个二叉树分为根节点,左子树,右子树
其中左子树和右子树也是二叉树,左右子树节点个数加起来等于n−1
设i个点能构成fi个二叉树
我们枚举左子树有几个点可得
f
n
=
f
0
∗
f
n
−
1
+
f
1
∗
f
n
−
2
+
…
+
f
n
−
1
∗
f
0
fn=f0∗fn−1+f1∗fn−2+…+fn−1∗f0
fn=f0∗fn−1+f1∗fn−2+…+fn−1∗f0
这个和卡特兰数列的递归定义是一模一样的
凸多边形的三角划分
一个凸的n边形,用直线连接他的两个顶点使之分成多个三角形,每条直线不能相交,问一共有多少种划分方案
答案还是卡特兰数列
我们在凸多边形中随便挑两个顶点连一条边,这个凸多边形就会被分成两个小凸多边形,由于每条直线不能相交,接下来我们就只要求这两个小凸多边形的划分方案然后乘起来即可
和二叉树的构成问题一样,我们枚举大凸多边形被分成的两个小凸多边形的大小即可
阶梯的矩形划分
一个阶梯可以被若干个矩形拼出来
图示是两种划分方式
像下图是不合法的划分方式
问,一个n阶矩形有多少种矩形划分
答案仍然是卡特兰数列
我们考虑阶梯的每个角
如图
每个角一定是属于不同的矩形的,我们考虑和左下角属于一个矩形的是哪个角
这个矩形将这个梯形又分成两个小梯形,如图
于是我们又可以写出递推式了
和卡特兰数列的递归式是一样的…