1303 斐波那契前 n 项和(矩阵乘法)

1. 问题描述:

大家都知道 Fibonacci 数列吧,f1=1,f2=1,f3=2,f4=3,…,fn=fn−1+fn−2。现在问题很简单,输入 n 和 m,求 fn 的前 n 项和 Snmodm。

输入格式

共一行,包含两个整数 n 和 m。

输出格式

输出前 n 项和 Snmodm 的值。

数据范围

1 ≤ n ≤ 2000000000,
1 ≤ m ≤ 1000000010

输入样例:
5 1000
输出样例:
12
来源:https://www.acwing.com/problem/content/description/1305/

2. 思路分析:

这道题目矩阵乘法的经典应用,矩阵乘法经常与快速幂结合在一起,难点在于将矩阵的前n项构造出来,因为这道题目需要求解的是前n项的和,所以可以将前n项和s放入到矩阵中,这样可以在矩阵乘法中计算出s,令Fn = [fn,fn+1,Sn],Fn+1 = [fn+1,fn+2,Sn+1],可以构造出对应的矩阵A,可以根据下面的式子计算矩阵乘法即可:

3. 代码如下:

from typing import List


class Solution:
    # 矩阵乘法满足结合律所以可以使用快速幂来解决
    # res = res * a
    def mul(self, n: int, mod: int, a: List[int], b: List[List[int]]):
        temp = [0] * n
        for i in range(n):
            for j in range(n):
                temp[i] = (temp[i] + a[j] * b[j][i]) % mod
        # 将结果复制到原来的a中, a其实是f1
        for i in range(n):
            a[i] = temp[i]

    # a = a * a
    def mul2(self, n: int, mod: int, a: List[List[int]], b: List[List[int]]):
        temp = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
        for i in range(n):
            for j in range(n):
                for k in range(n):
                    temp[i][j] = (temp[i][j] + a[i][k] * b[k][j]) % mod
        for i in range(n):
            for j in range(n):
                a[i][j] = temp[i][j]

    def process(self):
        n, m = map(int, input().split())
        # 将前n项和存储到矩阵中, f1的第三个元素存储的是前n项的和
        f1 = [1, 1, 1]
        a = [[0, 1, 0], [1, 1, 1], [0, 0, 1]]
        # 因为是从A1开始的所以计算的其实是A ^ (n - 1)
        n -= 1
        while n > 0:
            # res = res * a
            if n & 1:
                self.mul(3, m, f1, a)
            self.mul2(3, m, a, a)
            n >>= 1
        return f1[2]


if __name__ == '__main__':
    print(Solution().process())
在C++中,矩阵快速幂是一种高效计算斐波那契数列第n的方法。斐波那契数列定义为:F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2)。通过矩阵形式可以表示为: ``` [ F(n) ] = [ 1 1 ]^n [ F(1) ] [ F(n-1) ] [ 1 0 ] [ F(0) ] ``` 上述矩阵的n次方可以通过快速幂算法进行高效计算。 矩阵快速幂的核心思想是利用分治法将幂的计算过程分解为更小的幂次的计算。具体步骤如下: 1. 首先定义一个矩阵,例如: ``` Matrix = [ 1 1 ] [ 1 0 ] ``` 2. 使用快速幂算法计算矩阵的n次方。快速幂算法通过不断地将指数n分解为二的幂次来减少乘法的次数。具体来说,对于矩阵M和指数n,可以按照以下方式递归或迭代计算M的n次方: - 如果n为偶数,那么M^n = (M^(n/2))^2。 - 如果n为奇数,那么M^n = M * (M^(n-1))。 3. 使用初始值构造单位矩阵,然后用快速幂计算得到的结果与初始单位矩阵相乘,最终得到的矩阵左上角的元素就是斐波那契数列第n。 下面是使用C++实现矩阵快速幂求斐波那契数列第n的代码示例: ```cpp #include <iostream> #include <vector> using namespace std; const int MOD = 1000000007; // 定义模数,用于处理大数问题 typedef vector<vector<long long>> Matrix; // 矩阵乘法 Matrix multiply(const Matrix &a, const Matrix &b) { Matrix result(2, vector<long long>(2)); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { result[i][j] = 0; for (int k = 0; k < 2; ++k) { result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD; } } } return result; } // 矩阵快速幂 Matrix quickPow(Matrix base, long long n) { Matrix result(2, vector<long long>(2, 1)); while (n > 0) { if (n & 1) result = multiply(result, base); base = multiply(base, base); n >>= 1; } return result; } // 计算斐波那契数列第n int fibonacci(int n) { if (n == 0) return 0; Matrix base = {{1, 1}, {1, 0}}; Matrix result = quickPow(base, n - 1); return result[0][0]; // 返回F(n) } int main() { int n; cout << "Enter the position of the Fibonacci sequence: "; cin >> n; cout << "Fibonacci number at position " << n << " is: " << fibonacci(n) << endl; return 0; } ``` 这个程序通过定义矩阵乘法和矩阵快速幂算法,计算出斐波那契数列的第n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值