目标检测矩形框的绘制python

一位从GNSS转行的开发者分享了一个月深度学习经验,详细描述了如何自学YOLO并在实践中尝试将COCO数据集的标签可视化。通过实例解析,展示了如何读取txt标签文件并将其应用到图片上,以理解目标检测效果。
摘要由CSDN通过智能技术生成

我已经研究深度学习有一个月了,放弃了之前的工作(gnss),进入了一个全新的领域,去北京工作了。现在在学yolo,由于面试时候问到了目标检测,所以我上星期五自学了下yolo,在跑官网的demo,可也不能一直跑呀,也得有点自己的想法,突然觉得得看看每张图片和框画的怎么样。我用colab跑的, content/datasets/coco/labels/val2017/ 目录下是用文本写的标签,也就是框,我把该标签画到图片里了

!du -h /content/datasets/coco/images/val2017/000000000139.jpg

img = cv2.imread('/content/datasets/coco/images/val2017/000000000139.jpg')
cv2_imshow(img)

h,w,c = img.shape
with open('/content/datasets/coco/labels/val2017/000000000139.txt') as f:
   for data in f.readlines():
     data1 = data.split()


     xl=int((float(data1[1])-float(data1[3])/2)*w)
     yl=int((float(data1[2])-float(data1[4])/2)*h)
     xr=int((float(data1[1])+float(data1[3])/2)*w)
     yr=int((float(data1[2])+float(data1[4])/2)*h)

     
     cv2.rectangle(img,(xl,yl),(xr,yr),(255,0,0),1)
     cv2.putText(img,data1[0],(xl,yl),1,1,(0,255,0))
cv2_imshow(img)

下面是输出
160K /content/datasets/coco/images/val2017/000000000139.jpg在这里插入图片描述
在这里插入图片描述

### 回答1: 使用Python OpenCV绘制矩形框的方法如下: 1. 导入OpenCV库 ``` import cv2 ``` 2. 读取图像 ``` img = cv2.imread('image.jpg') ``` 3. 定义矩形框的位置和大小 ``` x, y, w, h = 100, 100, 200, 200 ``` 4. 绘制矩形框 ``` cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) ``` 其中,第一个参数是要绘制矩形框的图像,第二个参数是矩形框的左上角坐标,第三个参数是矩形框的右下角坐标,第四个参数是矩形框的颜色,第五个参数是矩形框的线宽。 5. 显示图像 ``` cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 完整代码如下: ``` import cv2 img = cv2.imread('image.jpg') x, y, w, h = 100, 100, 200, 200 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` ### 回答2: Python中的OpenCV库是许多计算机视觉和图像处理项目的首选库之一。绘制矩形框是OpenCV库中的一项非常常见的操作。以下是使用Python和OpenCV库绘制矩形框的步骤。 1. 安装OpenCV库: 在Python环境下安装OpenCV库,最简单的方法是使用pip命令。 可以在终端窗口中使用以下命令安装OpenCV库: `pip install opencv-python` 2. 导入OpenCV库和其他必要的库: 在Python代码中,需要导入以下库: ``` import cv2 import numpy as np ``` 3. 读取图像: 使用OpenCV库的imread()函数读取所需的图像。例如: ``` img = cv2.imread("image.jpg") ``` 4. 绘制矩形框: 使用cv2.rectangle()函数绘制矩形框。此函数需要以下参数: ``` cv2.rectangle(image, start_point, end_point, color, thickness) ``` - image:原始图像。 - start_point: 矩形的左上角坐标。 - end_point: 矩形的右下角坐标。 - color: 矩形框的颜色。 - thickness: 矩形框的线条粗细。(如果为负数,则矩形框将填充为所选颜色。) 例如,为以下图像绘制一个矩形框: ![image](https://user-images.githubusercontent.com/60111143/132330100-8268d4cd-c52e-4a62-a9fd-b991dbd6bdae.png) 代码如下: ``` img = cv2.imread("image.jpg") start_point = (120, 120) end_point = (500, 500) color = (255, 0, 0) # 蓝色 thickness = 5 cv2.rectangle(img, start_point, end_point, color, thickness) cv2.imshow("Image with rectange", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 输出结果如下图所示: ![image](https://user-images.githubusercontent.com/60111143/132330285-51be0b5d-6771-4238-99f3-5f96d183ca6e.png) 5. 显示图像: 使用cv2.imshow()函数显示结果图像。此函数需要以下参数: ``` cv2.imshow(window_name, image) ``` - window_name: 窗口的名称(一个字符串)。 - image: 想要显示的图像或帧。 6. 键盘绑定: 使用cv2.waitKey()函数等待键盘上的任何键被按下。如果在等待期间未按下任何键,操作将退出并关闭窗口。此函数需要一个整数参数,表示等待时间(以毫秒为单位)。 7. 销毁窗口: 使用cv2.destroyAllWindows()函数,关闭并销毁所有打开的窗口。 上述步骤中的代码示例可以在Python中成功绘制矩形框,并展示在窗口中。可以通过对start_point和end_point的值进行更改,调整矩形框的大小和位置,然后再次运行代码即可。 ### 回答3: Python是一种强大的编程语言,广泛应用于科学技术领域中的数据分析、机器学习、人工智能等方面。而OpenCV是一个专业用于计算机视觉的开源库,为Python提供了一系列强大的图像处理功能,大大简化了图像处理的操作。 绘制矩形框是OpenCV中的一个常用操作,可以用于图像分析、目标检测等领域。在Python中使用OpenCV绘制矩形框,有以下几种方法: 1. 使用cv2.rectangle()函数。该函数的参数包括:图像、矩形框的左上角坐标、矩形框的右下角坐标、颜色、线条粗细等。例如,以下代码可以在图像中画出一个左上角坐标为(50, 50),右下角坐标为(150, 150)的红色矩形框。 import cv2 img = cv2.imread('test.jpg') cv2.rectangle(img, (50, 50), (150, 150), (0, 0, 255), 2) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() 2. 使用matplotlib库的pyplot模块。Matplotlib是Python中一个非常流行的绘图库,它可以实现可视化效果。在使用pyplot绘制矩形框时,需要先将OpenCV读入的图像转为RGB格式。例如,以下代码同样可以在图像中画出一个左上角坐标为(50, 50),右下角坐标为(150, 150)的红色矩形框。 import cv2 from matplotlib import pyplot as plt img = cv2.imread('test.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(img) plt.gca().add_patch(plt.Rectangle((50, 50), 100, 100, edgecolor='r', fill=None, linewidth=2)) plt.show() 3. 使用Pillow库。Pillow是Python中非常好用的图像处理库,可以实现图像的读取、保存、转换等功能。使用Pillow绘制矩形框时,需要先将OpenCV读入的图像转为Pillow格式。例如,以下代码同样可以在图像中画出一个左上角坐标为(50, 50),右下角坐标为(150, 150)的红色矩形框。 import cv2 from PIL import Image, ImageDraw img = cv2.imread('test.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img) draw = ImageDraw.Draw(img) draw.rectangle((50, 50, 150, 150), outline='red', width=2) img.show() 综上所述,Python使用OpenCV绘制矩形框的方法有多种,开发者可以根据实际需求灵活选择。无论使用哪种方法,都需要注意矩形框的大小、颜色、线条粗细等参数设置,以达到最佳的视觉效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值