tensorflow 量化8bit的vgg16网络且读取中间结果

该篇博客详细介绍了如何在TensorFlow 2.5环境下配置虚拟环境,安装并测试GPU版TensorFlow。接着,通过VGG16模型演示了模型量化的过程,并提供了量化后的模型读取与推理的方法。同时,文章还展示了如何查看模型权重,以及利用netron可视化工具检查量化模型的权重和指数。最后,探讨了如何获取和解析模型的中间层输出值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 1.环境配置

1.安装anaconda,利用anaconda激活虚拟环境

#在shell中输入如下命令来新建环境
conda create -n tensor_flow_25 python=3.8#这里指定python的版本为3.8 (>=3.6) 
#查看虚拟环境的列表 
conda list 
#激活虚拟环境 
conda activate tensor_flow_25

2.在虚拟环境内部输入如下代码配置环境

conda install tensorflow-gpu=2.5.0

 等待安装完成,输入如下代码进行测试,通过

#进入python
python
#导入包
import tensorflow
#查看版本
tensorflow.__version__

 2.量化权重并且读取中间结果

import logging
import re

from tensorflow.python.keras.applications.vgg16 import decode_predictions
logging.getLogger("tensorflow").setLevel(logging.DEBUG)
from tensorflow.lite.python import schema_py_generated as schema_fb
import matplotlib.pyplot as plt
from tensorflow.keras import models
import tensorflow as tf
import numpy as np
assert float(tf.__version__[:3]) >= 2.3
from tensorflow import keras
from tensorflow.python import pywrap_tensorflow 
import pathlib
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input
import random
import flatbuffers
# 加载我的数据集
data_path = pathlib.Path('E:\\represent')
all_image_paths = list(data_path.glob('*/*'))  
all_image_paths = [str(path) for path in all_image_paths]  # 所有图片路径的列表
#random.shuffle(all_image_paths)  # 打散

image_count = len(all_image_paths)
#print(image_count)
#print(all_image_paths[:5])

label_names = sorted(item.name for item in data_path.glob('*/') if item.is_dir())
#print(label_names[:5])
label_to_index = dict((name, index) for index, name in enumerate(label_names))
#print(label_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值