1. 方法1
注意a要是Datetime类型
这个x12a.exe要翻墙下载
import statsmodels.api as sm
# 注意路径要全英
tes = sm.tsa.x13_arima_analysis(a,x12path="D:/Users/a/desktop/x12a.exe")
tes.seasadj
2. 方法2
import statsmodels.api as sm
#addictive 加法,multiplicative为乘法
first =sm.tsa.seasonal_decompose(a,model='addictive', extrapolate_trend='freq')
first.trend
first.seasonal
first.resid
关于将某列转化成时间序列
timestamp=pd.to_datetime(a.t期年月,format='%Y-%m')
a.index=timestamp
a.drop('t期年月',axis=1,inplace=True )
相关函数:
tsa.x13.x13_arima_analysis() Statsmodels官方教程 _w3cschool
https://www.statsmodels.org/devel/api.html#statsmodels-tsa-api