python时间序列季节调整x13_arima_analysis

这篇博客介绍了如何利用Python的statsmodels库进行时间序列分析,包括x13_arima_analysis和seasonal_decompose方法。首先,通过x13a.exe进行季节性调整,然后使用seasonal_decompose进行加法或乘法的季节性分解,提取趋势、季节性和残差。同时,还展示了如何将数据转换为时间序列格式。
摘要由CSDN通过智能技术生成

1. 方法1

注意a要是Datetime类型

这个x12a.exe要翻墙下载

import statsmodels.api as sm
# 注意路径要全英
tes = sm.tsa.x13_arima_analysis(a,x12path="D:/Users/a/desktop/x12a.exe")
tes.seasadj

2. 方法2

import statsmodels.api as sm
#addictive 加法,multiplicative为乘法
first =sm.tsa.seasonal_decompose(a,model='addictive', extrapolate_trend='freq')
first.trend
first.seasonal
first.resid

关于将某列转化成时间序列

timestamp=pd.to_datetime(a.t期年月,format='%Y-%m')
a.index=timestamp
a.drop('t期年月',axis=1,inplace=True )

相关函数:

tsa.x13.x13_arima_analysis() Statsmodels官方教程 _w3cschool 

https://www.statsmodels.org/devel/api.html#statsmodels-tsa-api 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值