1019 数字黑洞 (20 分)

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:
输入给出一个 (0,10​4​​ ) 区间内的正整数 N。

输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
题解:
特别注意题目给出的是一个(0,10​4​​ ) 区间内的正整数 N,但找到“数字黑洞”需要四位正整数,因此如果给出的是1,就要变为0001,相应的会得到两个数1000和0001,要凑到四位才行。对于刚输入的数字要判断一下是否是四个数字都相等(不够四位的用0凑到四位),如果都相等就直接输出相减后为0,否则要进入循环,直到减到6174。

#include <stdio.h>
#include <stdlib.h>

int main()
{
    int a[5],b[5],n,i,j,k,t,n1,n2;
    scanf("%d",&n);
    k=0;
    n1=0;
    n2=0;
    while(n)
    {
        a[k++]=n%10;
        n=n/10;

    }
    while(k<4)a[k++]=0;
    for(i=0; i<k; i++)b[i]=a[i];
    for(i=1; i<k; i++)
    {
        for(j=0; j<=k-i-1; j++)
        {
            if(a[j]<a[j+1])
            {
                t=a[j];
                a[j]=a[j+1];
                a[j+1]=t;

            }

        }

    }
    for(i=1; i<k; i++)
    {
        for(j=0; j<=k-i-1; j++)
        {
            if(b[j]>b[j+1])
            {
                t=b[j];
                b[j]=b[j+1];
                b[j+1]=t;

            }

        }

    }
    for(i=0; i<k; i++)
    {
        n1=n1*10+a[i];

    }
    for(i=0; i<k; i++)
    {
        n2=n2*10+b[i];

    }
    if(n1==n2)
        printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
    else
    {
        while(n1-n2!=6174)
        {
            printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
            n=n1-n2;
            n1=0;
            n2=0;
            k=0;
            while(n)
            {
                a[k++]=n%10;
                n=n/10;

            }
            while(k<4)a[k++]=0;
            for(i=0; i<k; i++)b[i]=a[i];
            for(i=1; i<k; i++)
            {
                for(j=0; j<=k-i-1; j++)
                {
                    if(a[j]<a[j+1])
                    {
                        t=a[j];
                        a[j]=a[j+1];
                        a[j+1]=t;

                    }

                }

            }
            for(i=1; i<k; i++)
            {
                for(j=0; j<=k-i-1; j++)
                {
                    if(b[j]>b[j+1])
                    {
                        t=b[j];
                        b[j]=b[j+1];
                        b[j+1]=t;

                    }

                }

            }
            for(i=0; i<k; i++)
            {
                n1=n1*10+a[i];

            }
            for(i=0; i<k; i++)
            {
                n2=n2*10+b[i];

            }


        }

        printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值