给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104 ) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
题解:
特别注意题目给出的是一个(0,104 ) 区间内的正整数 N,但找到“数字黑洞”需要四位正整数,因此如果给出的是1,就要变为0001,相应的会得到两个数1000和0001,要凑到四位才行。对于刚输入的数字要判断一下是否是四个数字都相等(不够四位的用0凑到四位),如果都相等就直接输出相减后为0,否则要进入循环,直到减到6174。
#include <stdio.h>
#include <stdlib.h>
int main()
{
int a[5],b[5],n,i,j,k,t,n1,n2;
scanf("%d",&n);
k=0;
n1=0;
n2=0;
while(n)
{
a[k++]=n%10;
n=n/10;
}
while(k<4)a[k++]=0;
for(i=0; i<k; i++)b[i]=a[i];
for(i=1; i<k; i++)
{
for(j=0; j<=k-i-1; j++)
{
if(a[j]<a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
for(i=1; i<k; i++)
{
for(j=0; j<=k-i-1; j++)
{
if(b[j]>b[j+1])
{
t=b[j];
b[j]=b[j+1];
b[j+1]=t;
}
}
}
for(i=0; i<k; i++)
{
n1=n1*10+a[i];
}
for(i=0; i<k; i++)
{
n2=n2*10+b[i];
}
if(n1==n2)
printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
else
{
while(n1-n2!=6174)
{
printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
n=n1-n2;
n1=0;
n2=0;
k=0;
while(n)
{
a[k++]=n%10;
n=n/10;
}
while(k<4)a[k++]=0;
for(i=0; i<k; i++)b[i]=a[i];
for(i=1; i<k; i++)
{
for(j=0; j<=k-i-1; j++)
{
if(a[j]<a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
for(i=1; i<k; i++)
{
for(j=0; j<=k-i-1; j++)
{
if(b[j]>b[j+1])
{
t=b[j];
b[j]=b[j+1];
b[j+1]=t;
}
}
}
for(i=0; i<k; i++)
{
n1=n1*10+a[i];
}
for(i=0; i<k; i++)
{
n2=n2*10+b[i];
}
}
printf("%04d - %04d = %04d\n",n1,n2,n1-n2);
}
return 0;
}