MAC GLM-PC:使用2天之后的感觉

在前两天智谱清言发布了一个自动化工具,在输入命令之后可以在电脑上自动执行命令里面的所有操作,在节前特地去申请了试用,因为在过年期间太多祝福短语要发送了,所以系统通过这个工具来简化发消息的流程。但是试用之后并不觉得如意。

首先,我是在mac上使用的,如果在windows上没碰到这样的问题,请留言,后面我在windows上也去试用看看。

我第一次用的时候是要在一家亲群的群列表,给所有亲人生成图片并发送祝福语,GLMPC收到这个命令之后,先是打开了我的微信,找到这个群,在旁边找到了成员列表,切换到GLMPC,然后开始生成图片,完成保存为在下载列表,然后再次打开微信,开始寻找成员列表里面的人员,发送图片和消息,这个时候就出现了问题,就是发送不会自动发送,而是要我手动发送给每个人。开始以为是我的任务设置有问题。

于是我开始了第二次的试用,换了一个群,让它开始执行,这次它遵循之前的流程之后,它并没有获取我的群成员列表,而是在找了添加群成员的按钮,找所有的用户列表作为了群成员列表,这个吓到人了。

感觉这个工具的初衷是好的,不过很多的功能还需要再完善,持续关注这个工具的进展,因为我估计年后也会做一个这样的自动化工具,不过是专门写代码用的。

MATLAB的glm()函数是用于实现广义线性模型(GLM)的函数。广义线性模型是一种常用的统计模型,适用于各种不同类型的响应变量(例如二元数据、计数数据、连续数据等)。该函数可以根据用户提供的数据和模型设定来拟合广义线性模型,并给出相应的参数估计结果。广义线性模型的模型结构和参数设定可以参考引用和引用提供的资料。在GLM中,选择合适的概率分布和正则联系函数是非常重要的,因为它们决定了模型的适用性和预测效果。常见的概率分布和对应的正则联系函数如下:对于正态分布,常用的正则联系函数是恒等函数;对于泊松分布,常用的正则联系函数是对数函数;对于二项分布,常用的正则联系函数是分对数函数。根据具体的数据和研究问题,选择合适的概率分布和正则联系函数是非常重要的,可以根据引用提供的列表进行选择。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [机器学习 | MATLAB实现GLM广义线性模型参数设定](https://blog.csdn.net/kjm13182345320/article/details/126443290)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [回归预测 | MATLAB实现GLM广义线性模型数据回归预测](https://blog.csdn.net/kjm13182345320/article/details/126436202)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值