区间动规

能量项链

(energy.pas/c/cpp)

 

【问题描述】

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10)(10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

 

【输入文件】

输入文件energy.in的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

【输出文件】

输出文件energy.out只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。

【输入样例】

 4

 2  3  5  10

【输出样例】

710

 

#include<cstdio>
#include<cstring>

long f[201][201],max;
int e[201];
int i,j,n;
int main()
{
    freopen("energy.in","r",stdin);
    freopen("energy.out","w",stdout); 
    scanf("%d",&n);
    for (i=1;i<=n;i++)
    {
      scanf("%d",&e[i]);
      e[i+n]=e[i];
      }
     memset(f,0,sizeof(f));
    /*for (i=1;i<=n;i++)
      for (j=1;j<=i+n-1;j++)
      {
         if (i==j) f[i][j]=0;
         else if (i<j)
         { 
         for (int k=i;k<j;k++)
           if (f[i][k]+f[k+1][j]+e[i]*e[k+1]*e[j+1]>f[i][j]) 
           f[i][j]=f[i][k]+f[k+1][j]+e[i]*e[k+1]*e[j+1];
          }
         if (i<=n && j-i+1==n && f[i][j]>max)max=f[i][j]; 
        // printf("%ld ",f[i][j]);
      }*/错误代码 
     for (int j=2;j<n+n;j++) 
      for (int i=j-1;i>=1 && j-i<n;i--)  //区间向左向右扩展的枚举顺序 
      {
        for (int k=i;k<j;k++) 
        {
            long temp=f[i][k]+f[k+1][j]+e[i]*e[k+1]*e[j+1];
            if (temp>f[i][j]) f[i][j]=temp;
        }
        if (f[i][j]>max) max=f[i][j];
      }     
     printf("%ld\n",max); 
    // getchar(); getchar();
}

 

 

展开阅读全文

没有更多推荐了,返回首页