线段 ——2D(如何判断线段是否相交)

结论: (1)选取A线段的一个端点,与另外一根线段的两个端点,构成两个向量,u,v,和A线段两个端点构成一个向量T,如果u,v向量在T的同一侧,则两个线段必定不相交。 (如何判断一个线段在另外一个线段的那一侧) (2) 如果两根线段的四个端点,都满足条件(1) 则线段相交。 ...

2017-07-19 00:46:41

阅读数:312

评论数:0

向量 ——2D(如何判断一个向量在另外一个向量的哪一侧)

如上图在向量W,U,V中,和a,b,c中,分别是两种情况,W,V分别在U的一侧,而b,c都在a向量的同一侧。 我们先给出结论,如果有向量A,B,C ,且 A叉乘B=k1,A叉乘C=k2, 若,k1,k2同为正数,或者同为负数,则B,C向量在A的同一侧,反之分别在一侧。(2D叉乘) 则: 如...

2017-07-18 23:50:49

阅读数:1467

评论数:1

多线段几何图形—— 简单几何图形(布尔运算)

如上图: 已知两个多边形(A,B,C,D)(E,F,G,H,I),如何求出图形(F,K,C,J)? 1.求出数据中的所有线段,线段没有重合区域,除了线段端点也不会和任何线段相交(如上图新增交点J,K,如DC线段,变成DJ,JC线段) 2.搜索多线段中的封闭区域 ,搜索到三个区域(A,B,K,F,...

2017-04-26 18:34:30

阅读数:1479

评论数:0

多线段几何图形—— 简单几何图形(从线段中搜索封闭图形)

先直接给出结论 在连通图(通俗的解释 图中每一个顶点最少可以到达两根线。 同时我们把使用了此顶点的线段称之为此顶点的连通线)中。 以顶点为圆心,则整个圆会被N个连通线划分成N个圆心角。 如上图,顶点A的圆,被划分成1,2,3 圆弧角。 结论: 1.在连通图中,所有封闭图形的角的数...

2017-04-26 18:10:25

阅读数:1661

评论数:0

数学定义与公式

对数: 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN

2016-08-23 16:21:02

阅读数:290

评论数:0

多线段几何图形—— 简单几何图形(判断一个点是否在图形的内部)

先给出结论 以点为端点,朝两侧发射射线(两根射线平行),如果任意一侧的交点个数为偶数个,那么这个点就不在几何体的内部,反之在几何体的内部。 以上图为例,红色的点为需要判断的点,射线组合p,n,q都是合法的检测线(图上的p,n,q代表的是同时两侧的射线,同时我们称图中字母所在的一侧为正,...

2016-08-17 15:02:53

阅读数:1872

评论数:1

数学基础 —— 向量旋转到另一个向量

如上图 已知V,U向量,如何求V逆时针旋转到U的角度? U逆时针旋转到V的度数? (1)单位化V,U (2)U,V点乘获取到一个值A (3)通过反三角函数ACos 获取到弧度值,然后在转为角度值B。 (4) 如果是V逆时针旋转到U,那么V叉乘U,反之如果是U逆时针旋转到V,那么U叉乘V ,得到...

2016-08-07 18:46:38

阅读数:4489

评论数:0

多线段几何图形—— 简单几何图形(获取一个在图形内部的点)

如何获取一个点,在几何体的内部。 (1)找出图形内一个可以裁剪的角,然后角的两边的端点连成一根线段。  ( 如何找出图形内可以裁剪的角参考:  图形如何三角化) (2)使用这个连线的中点就 一定在图形的内部。 以下图为例 (1) 假设A点为裁剪点。  (...

2016-08-07 18:05:39

阅读数:454

评论数:5

三角形 —— 基础

计算三角形的面积 1.已知三角形的三点,求面积。 (1)海伦公式 求出三边长为a,b,c p=(a+b+c)/2 则面积的平方 s^2=p*(p-a)*(p-b)*(p-c) (2)向量的叉乘 利用向量的叉乘求出四边形的面积,然后面积/2就是三角形的面积   ps: 向量的叉乘

2016-08-06 18:21:41

阅读数:272

评论数:0

多线段几何图形—— 简单几何图形(多边形三角形化)

1.对凸多边形的三角化(没有凹角的多边形叫做凸多边形) 如上图,凸多边形的三角化是个很简单的问题 (1)使用当前点和前后两个点,构成一个三角形,保存到三角形数组中。 (2)删除当前点,形成一个新的图形。 (3)重复(1)(2)操作直到点只剩3个时终止,并且把这三个点构成一个三角形,保...

2016-08-06 17:50:02

阅读数:1450

评论数:0

多线段几何图形—— 简单几何图形(如何判别图形的顺逆性)

其实说图形的顺逆性,更不如说如何给图形的方向定下一个标准。 可通过下列方法得到一个标准。 1.获取图形内的凸角。        如何判断几何图形的凹凸角 2.求出这个凸角的叉乘值。  如何求2D的叉乘值 3.对这个叉乘值的正负给出定义(例如,叉乘为负数时我们定义为正时针图形,反之定义为逆时...

2016-08-06 17:39:28

阅读数:481

评论数:0

多线段几何图形—— 简单几何图形(求几何图形面积)

1.有向面积 (1)三角形的有向面积 如下图所示,我们根据2d的向量叉乘就能求出来一个有向面积。 (2)多边形的有向面积       1.选取任意一点,这点与所有的线段构成的三角形面积之和就是多边形的面积   如上图所示,我们我们选取一个点E作为参考点(选取原点作为参考点是可以直...

2016-08-06 16:00:25

阅读数:560

评论数:0

多线段几何图形—— 简单几何图形(如何求图形中的凸角、凹角)

1.简单几何体找出一个凸角,在构成这个几何体的所有点中,找到一个点的x或y的值是最大或最小,那么这个点对应的角一定是凸角。 2.简单几何体找出所有凹凸角,先利用第一条,求出一个凸角,然后利用

2016-08-05 23:28:39

阅读数:905

评论数:0

多线段几何图形 —— 类型定义

1.简单几何图形  简单几何图形指,不包含洞,且没有重叠的几何图形。 2.复杂几何图形 复杂几何图形指,包含洞,或者有重叠的几何图形

2016-08-05 19:21:42

阅读数:366

评论数:0

数学基础 —— 旋转(2D 正旋转)

一般的来讲大家喜欢称旋转为正时针旋转,或者逆时针旋转,例如我让一个点绕圆心旋转90°,大家都会理解为逆时针吧这个点旋转90°,实际上这个说法是存在漏洞和错误的, 当我们的坐标系不使用左手坐标系时这个说法是错误的,所以在此定义 一个正旋转。 即,2d中,坐标轴,x轴朝y轴方向旋转90°和y轴重合...

2016-08-05 18:56:41

阅读数:1985

评论数:0

数学基础 —— 向量运算(叉乘)

向量的叉乘,求通知垂直两个向量的向量,即c垂直于a,同时c垂直于b(a与c的夹角为90°,b与cc的夹角为90°) c =  a×b = (a.y*b.z-b.y*a.z , b.x*a.z-a.x*b.z  , a.x*b.y-b.x*a.y) 以上图为例a(1,0,0),b(0,1,0)...

2016-08-05 17:17:57

阅读数:43586

评论数:0

数学基础 —— 向量运算(点积)

向量积|c|=|a×b|=|a| |b|cos

2016-08-05 13:34:00

阅读数:622

评论数:0

数学公式 —— 向量

向量点乘 公式 a·b = a.x*b.x+a.y*a.y  = |a| |b|cosα (以二维向量为例,三维向量公式同理) 也就是说两个向量的点积等同于两个向量的模(向量的长度)相乘,在乘以两个向量的夹角α的cos值(两个向量的夹角永远是最小的那个夹角,即α

2016-08-05 12:58:52

阅读数:459

评论数:0

数学基础 —— 向量基础(二)

向量基 以二维向量为例,向量基有两个(1,0),(0,1),也就是x轴和y轴,由这组基底就能表示平面内所有向量。 例如一个向量u(2,2)可以表示为v(2,0)+w(0,2)或者     2(1,0)+2(0,1)也就是两个基向量倍数的和。

2016-08-03 21:51:10

阅读数:254

评论数:0

数学基础 —— 向量基础(一)

向量用术语化的描述来讲就是一个有长度大小,方向的量 ,但是没有位置。用通俗的话来说向量就是从原点到点形成的一个线段

2016-08-03 21:29:30

阅读数:251

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭