tensorflow 2.6版本

本文介绍了如何使用TensorFlow 2.6更新并构建一个卷积神经网络模型,对CIFAR10数据集进行图像分类。通过训练和评估,模型达到约70.74%的准确率,仍有提升空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.更新tensorflow 2.6版本

pip install tensorflow

Successfully installed absl-py-0.13.0 astunparse-1.6.3 cachetools-4.2.2 certifi-2021.5.30 charset-normalizer-2.0.4 clang-5.0 flatbuffers-1.12 gast-0.4.0 google-auth-1.35.0 google-auth-oauthlib-0.4.6 google-pasta-0.2.0 grpcio-1.39.0 h5p
y-3.1.0 idna-3.2 keras-2.6.0 keras-preprocessing-1.1.2 numpy-1.19.5 oauthlib-3.1.1 opt-einsum-3.3.0 protobuf-3.17.3 pyasn1-0.4.8 pyasn1-modules-0.2.8 requests-2.26.0 requests-oauthlib-1.3.0 rsa-4.7.2 six-1.15.0 tensorboard-2.6.0 tensor
board-data-server-0.6.1 tensorboard-plugin-wit-1.8.0 tensorflow-2.6.0 tensorflow-estimator-2.6.0 termcolor-1.1.0 typing-extensions-3.7.4.3 urllib3-1.26.6 werkzeug-2.0.1 wheel-0.37.0 wrapt-1.12.1

pip install matplotlib

下载并准备 CIFAR10 数据集

CIFAR10 数据集包含 10 类,共 60000 张彩色图片,每类图片有 6000 张。此数据集中 50000 个样例被作为训练集,剩余 10000 个样例作为测试集。类之间相互独立,不存在重叠的部分。

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0

验证数据 

#验证数据
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值