源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
掌纹图像识别:解锁人类掌纹/生物识别的未来——技术解析与前沿数据集探索
掌纹识别是一种利用手掌表面独特的线条、纹理和褶皱模式进行身份认证的生物识别技术。它具有非侵入性、高准确性和难以伪造的特点,被广泛应用于安全认证领域。以下将结合提供的链接,详细介绍掌纹识别的技术背景、数据集和研究进展。原创 2025-05-05 12:27:18 · 86 阅读 · 0 评论 -
基于Transformer和U-Net的图像分割模型——TransUNet的实现与原理解析【代码+示例数据训练】
实现了一个基于Transformer和U-Net结构的图像分割模型——。其核心思路是将U-Net中的卷积结构与Transformer的自注意力机制相结合,从而提升图像分割任务的性能。原创 2025-01-12 15:52:59 · 819 阅读 · 0 评论 -
深度学习领域的对抗攻击方法和对抗样本防御方法【理论理解+源码参考】
以下介绍了一系列针对深度学习模型的对抗攻击方法和对抗样本防御方法。对抗攻击方法包括GSM、I-FGSM、C&W、Deepfool、PGD和AdvGAN,它们利用梯度信息或生成对抗网络来生成欺骗性的对抗样本。对抗样本防御方法包括PD、ComDefend、RARFTA和RI,它们通过预处理、组件处理、随机特征转换或随机扰动等方式增强模型的鲁棒性,以减少对抗攻击的影响。这些方法共同努力提高深度学习模型的安全性和鲁棒性,以应对日益增加的对抗攻击威胁。原创 2024-04-16 09:44:45 · 1274 阅读 · 0 评论 -
【从单张图像解锁深度信息】Depth Anything一种用于鲁棒单目深度估计的高度实用的解决方案
在不追求新颖的技术模块的情况下,我们的目标是建立一个简单而强大的基础模型,处理任何情况下的任何图像。此外,通过使用 NYUv2 和 KITTI 的度量深度信息对其进行微调,设置了新的 SOTA。这项工作介绍了Depth Anything,一种在1.5百万标记图像和62百万+未标记图像的组合上进行训练,实现强大单目深度估计的实际解决方案。参考:https://zhuanlan.zhihu.com/p/681020500。论文:https://arxiv.org/abs/2401.10891。原创 2024-02-04 15:07:10 · 876 阅读 · 0 评论 -
【All Things ViTs】Understanding and Interpreting Attention in Vision(关于理解和解释视觉注意力的教程)
"All Things ViTs"是一个关于理解和解释视觉注意力的教程,特别是在深度学习研究中的应用。该教程旨在提供对注意力机制内部运作的见解,以及其在视觉和多模态环境中的应用。教程材料,包括代码示例和交互式演示,托管在该组织的网站和GitHub存储库上。该教程由Hila Chefer和Sayak Paul主持,旨在探讨注意力机制在深度学习研究中在各个领域的日益流行。参考:https://blog.csdn.net/gzq0723/article/details/131407762。原创 2024-02-04 14:26:01 · 218 阅读 · 0 评论 -
快速入门教程:神经常微分方程 (Neural ODE)
神经常微分方程(Neural Ordinary Differential Equations,简称 Neural ODE)是一种基于常微分方程(Ordinary Differential Equations,ODEs)的深度学习方法,它结合了传统的ODE数值求解技术和神经网络模型。通过使用ODE来建模数据的演化过程,Neural ODE可以自动地学习数据的动力学特征,从而可以进行预测、插值和生成等任务。具体而言,它将神经网络的参数视为ODE的初始状态,并使用ODE来描述参数在输入数据上的演化过程。原创 2023-06-14 12:41:57 · 5111 阅读 · 1 评论 -
【回顾经典AI神作】理解和实现ResNeXt(比ResNet最先进的图像分类模型)
以下三篇是介绍和改进残差网络的论文:用于图像识别的深度残差学习())深度残差网络中的身份映射))深度神经网络的聚合残差转换())原创 2023-05-30 10:51:19 · 883 阅读 · 0 评论 -
【回顾经典AI神作】理解和实现ResNet(最先进的图像分类)
以下三篇是介绍和改进残差网络的论文:用于图像识别的深度残差学习())深度残差网络中的身份映射))深度神经网络的聚合残差转换())原创 2023-05-30 10:20:44 · 675 阅读 · 0 评论 -
【回顾经典AI神作】卷积神经网络CNN架构系列:LeNet,AlexNet,VGG,GoogLeNet,ResNet
卷积神经网络(CNN或ConvNet)是一种特殊的多层神经网络,旨在以最少的预处理直接从像素图像中识别视觉模式。ImageNet项目是一个大型视觉数据库,设计用于视觉对象识别软件研究。ImageNet 项目举办年度软件竞赛,即 ImageNet 大规模视觉识别挑战赛 (),软件程序竞相正确分类和检测对象和场景。在这里,我将讨论ILSVRC顶级竞争对手的CNN架构。原创 2023-05-30 09:55:45 · 915 阅读 · 0 评论 -
Windows10完美安装AI绘画软件stable-diffusion-webui:没有GPU显卡的电脑系统也能运行、测试AI绘画软件【包教会一键安装】
简要介绍:Stable Diffusion WebUI 是一个开源的 Web 用户界面,用于管理和监视基于 Linux 的稳定发行版的软件包,例如 Debian 或 Ubuntu。它是 Stable Diffusion 软件包管理工具的一部分,可以让系统管理员轻松地安装、升级和删除软件包,以及查看软件包的详细信息和依赖关系。原创 2023-04-01 10:30:37 · 2251 阅读 · 0 评论 -
【源码教程案例】AI绘画与安全在未来主要方向有哪些?
高质量图像生成:随着生成模型的不断改进,未来的AI绘画可能会产生更高质量、更真实的图像,以满足各种应用场景的需求。个性化创作:AI绘画可以通过用户的个性化偏好和需求来定制艺术作品。这种定制可能包括颜色、形状、风格和主题等方面的调整。跨媒介融合:AI绘画将继续拓展到其他艺术领域,如雕塑、建筑、音乐和动画等,实现跨媒介的创意融合。艺术家与AI的协作:AI可以成为艺术家的辅助工具,帮助他们快速实现创意或者提供新的灵感来源。未来,我们可能会看到更多艺术家与AI共同创作的项目。原创 2023-03-29 19:26:23 · 1552 阅读 · 0 评论 -
小国模型和大国模型的差别、跨模态(Cross-modal)和多模态(Multi-modal)的差别
小国模型和大国模型是指在深度学习领域中,模型的规模和参数量大小的不同。一般来说,小国模型指的是参数量较小的模型,例如MobileNet、ShuffleNet等,而大国模型则指参数量较大的模型,例如VGG、ResNet、Inception等。具体来说,小国模型是通过精简网络结构或采用轻量化设计,以达到减少参数量、减少计算量和加速训练过程的目的。这些模型通常在计算资源受限的场景下应用较多,如移动端或嵌入式设备上的计算任务。原创 2023-03-28 14:19:28 · 1611 阅读 · 0 评论 -
推荐人工智能领域十大类专业好用的深度学习预训练模型
深度学习领域出现了许多优秀的预训练模型。原创 2023-03-27 15:35:57 · 1980 阅读 · 0 评论 -
怎样系统的学习 AI 绘画?模型代码案例
学习 AI 绘画需要从以下几个方面进行系统的学习:数学基础:学习 AI 绘画需要具备一定的数学基础,包括线性代数、概率论、微积分等。这些数学知识是深度学习模型的基础,有助于理解模型的数学原理和算法细节。编程基础:学习 AI 绘画需要具备一定的编程基础,包括Python编程语言和相关的深度学习框架,例如TensorFlow、PyTorch等。这些编程工具可以帮助学习者实现和调试深度学习模型,并进行绘画实践。绘画基础:学习AI绘画需要具备一定的绘画基础,包括色彩理论、构图原则、线条表现等。原创 2023-03-22 22:26:43 · 519 阅读 · 0 评论 -
可视化深度学习模型的方法/工具
可以使用 TensorBoard 来可视化深度学习模型。TensorBoard 是 TensorFlow 中的一个可视化工具,可以帮助您在训练期间和训练后可视化模型的训练曲线、模型结构、激活值和权值分布等信息。可以使用 TensorBoard 的命令行工具或在 Jupyter 笔记本中使用 TensorBoard magic 命令来启动 TensorBoard。此外,还可以使用 Keras 内置的 TensorBoard 回调函数将 TensorBoard 数据写入模型的训练过程中。原创 2023-01-04 23:42:53 · 1292 阅读 · 0 评论 -
使用OpenCV-Python+Flask+json完美实现网页与本地互相协同数据流传输: NLP模型聊天文本request传输+图像算法结果传输的解决方案
使用OpenCV-Python+Flask+json完美实现网页与本地互相协同数据流传输:获取网页服务端j结果: NLP模型聊天文本request传输+图像算法结果传输的解决方案。原创 2022-11-18 15:31:37 · 1426 阅读 · 0 评论 -
OpenCV5.x 图像处理之G-API 架构高级设计
G-API 是一个异构框架,它提供了一个统一的 API 来对具有许多支持的后端的图像处理管道进行编程。关键设计理念是保持管道代码本身与平台无关,同时在图形编译(配置)时使用额外参数指定要使用的内核和使用的设备。原创 2022-09-25 23:04:39 · 873 阅读 · 0 评论 -
基于新版OpenCV5(C++)+OpenVINO Toolkit案例算法模型示例使用(一条语义分割与目标检测示例搞懂OpenVINO模型部署机制)
编译所有demo示例: ./build_demos.sh 根据提示,编译的可执行文件在/root/omz_demos_build。算法内容如下:案例很多,从自然语言到计算机视觉基本都有,很丰富,自己按照文档说明使用就行。本文只是简单过一下实现方法。到编译好的路径下找到偶:mask_rcnn_demo(也可以复制到当前目录使用)为了发表,还是将可执行文件复制到当前目录。使用模型转换器的示例:时间慢,耐心等待。下载模型列表为:models.lst。找到路径,倒入相关参数就可以运行了。原创 2022-09-22 01:23:41 · 2805 阅读 · 5 评论 -
关于粉丝需要编译python版本的opencv-cuda11的方法(在ubuntu22.04平台编译,python3.6,cuda11.7)
这是一项具有强大 NVIDIA GPU 的免费服务。设置起来也容易了很多,已经满足了大部分要求。在本文中,我将分享我如何 dnn 通过几行代码为 OpenCV 和 GPU。分配 dnn给 GPU 的代码很简单:上一篇文章已经提到。原创 2022-09-04 13:05:31 · 1271 阅读 · 0 评论 -
yolov4视频目标检测:使用C++版本联合CUDA11.2的OpenCV 5.x编译生成opencv-python==5.x进行推理
代码后续分享,opencv+cuda编译分享。原创 2022-09-04 00:10:18 · 973 阅读 · 0 评论 -
C++版本的OpenCV 5.x编译生成opencv-python==5.x(GPU版本)接口并进行调用
要么复制要么软连接,如果还是不行就使用这条命令全局搜索find / -name cv2*.so,其中cv2.cpython-36m-x86_64-linux-gnu.soo才是你生成的,用这个就行。由于只是简单的操作一张图片,所以从运行速度上没有多大变化,当经过一些复杂像素计算就能体现GPU的优点了。原创 2022-09-01 21:04:44 · 2643 阅读 · 2 评论 -
【强力推荐】基于Nvidia-Docker-Linux(Ubuntu18.04)平台:新版OpenCV5.x(C++)联合CUDA11.1(GPU)完美配置视觉算法开发环境
OpenCV 5.x 即将推出,但是官方还没有给出直接安装版,需要自己编译。OpenCV(开源计算机视觉库: http: //opencv.org)是一个包含数百种计算机视觉算法的开源库。该文档描述了所谓的 OpenCV 2.x API,它本质上是一个 C++ API,而不是基于 C 的 OpenCV 1.x API(C API 已被弃用,并且自 OpenCV 2.4 版本以来未使用“C”编译器进行测试)OpenCV 具有模块化结构,这意味着该包包含多个共享或静态库。...原创 2022-08-24 21:14:40 · 2404 阅读 · 0 评论 -
目标检测系列算法:YOLOv7代码复现
YOLOv7在5FPS到160FPS范围内的速度和准确度都超过了所有已知的物体检测器,并且在GPUV100上30FPS或更高的所有已知实时物体检测器中具有最高的准确度56.8%AP。原创 2022-07-23 18:01:29 · 3151 阅读 · 0 评论 -
AI模型设计:Ubuntu18.04完美编译在阿里云镜像源tensorflow C++并实现深度学习计算【编译方法与测试深度学习C++源码已开源】
目录0、编译环境参数要求1、bazel编译教程方法2、获取编译好的tensorflow c++动态库进行调用开发3、tensorflow c++开源demo实现源码过程目录训练源码CMakeList.txt填入编译成功的TF动态库与头文件路径开始编译并输出C++训练结果编译好的环境已免费开源0、编译环境参数要求ubuntu18.01bazel 0.26.1miniconda3+python3.6gcc 7.5.0glibc 2.27cmake-3.19.4icu/release-62-1原创 2022-04-23 15:23:28 · 2183 阅读 · 0 评论 -
AI模型设计:C++版本tensorflow_gpu模型构建与训练
未完待续,周末更新三篇文章:#include <tensorflow/tensorflow/cc/client/client_session.h>#include <tensorflow/tensorflow/cc/ops/standard_ops.h>#include <tensorflow/tensorflow/core/framework/tensor.h>#include <tensorflow/tensorflow/cc/framework/gra原创 2022-04-13 22:33:19 · 1994 阅读 · 1 评论 -
AI模型部署到Android端:模拟器App的生成与tensorflow模型的输入输出调试
本文是本人涉及深度学习模型部署到安卓端的第一项helloworld,初入安卓领域,若有写得不好的地方或有误的地方,欢迎指正,本教程从0到1实现,希望对你有帮助。目录1、Windows10配置安卓环境1.0、配置SDK,JAVA,NDK注意事项(一次性安装)1.1、配置阿里源镜像(国内加载更快)1.2、安装手机界面虚拟模拟器(用作显示)1.3、运行C++安卓端demoC++创建的demo路径先构建build启动模拟机器和app模拟器输出结果2、训练好简单的TensorFlow模型2.1、python3训练T原创 2022-04-10 12:01:11 · 5292 阅读 · 0 评论 -
AI模型C++部署:TensorFlow2图像分类模型之金钱豹大战齐天大圣【OpenCV纯C++接口调用tensorflow生成的pb模型】【源码已开源】
目录1、准备训练数据【金钱豹与齐天大圣】1.0、获取数据地址1.1、处理数据集100*1001.2、数据批量处理2、tensorflow2.x模型生成2.0、TF2分类模型网络构建2.0.1、模型网络结构与训练2.0.2、训练输出2.0.3、vscode内浏览模型结构(tensorboard --logdir)2.0.4、生成pb模型2.0.5、查看pb模型节点名称【事实上,上述的可视化就可以查看了,这里只是打印出来方便查看】2.1、使用OpenCV接口调用TF2-PB模型2.1.0、配置OpenC...原创 2022-04-04 21:19:56 · 3481 阅读 · 0 评论 -
AI模型C++部署:【配置OpenCV4++环境】与【三种在 C++ 中部署 TensorFlow 模型的方式】【准备阶段】
目录1、opencv4++开发环境配置1.1、linux脚本一次性安装1.2、环境参数配置1.2.1、安装在其他路径(或当前路径)1.2.2、安装指定的系统路径下(或默认路径/usr/local下)1.2.3、查看安装opencv信息1.2.4、卸载OpenCV命令 (如果不想使用的情况下,或者想安装其他版本的情况下可以进行如下操作,否则别乱卸载)1.2.5、配置OpenCV与CUDA(GPU)的接口1.3、opencv++官方demo测试1.3.1、cmake-make进行编译1.3.2、不使用cma原创 2022-04-04 16:52:43 · 2496 阅读 · 0 评论 -
AI服务器环境:OpenCV++与spleeter人声音伴奏分离docker环境/源码地址
目录1、获取方式前提条件2、获取docker命令1、获取方式前提条件前提你的linux服务器或者本地linux系统已经安装nvidia-docker2、获取docker命令docker pull ckck2021/matrix:spleeter-opencv3-py36-eigen-g7docker pull ckck2021/matrix:opencv-aliyun-ub1604-py36资料来源:https://hub.docker.com/layers/matrix/ckck202e原创 2022-04-03 19:27:24 · 3797 阅读 · 6 评论 -
AI模型C++部署:ubuntu安装Cython并使用C/C++调用python动态库【附加c++与python互相调用算法demo程序接口的源码】
目录零、源码安装python3.6一、Cython生成动态库 python3调用备注1:不同构建的方式(可将py生成c代码或只需生成动态库)备注2:py后缀不同的打包方式源码实现二、Cython生成python3动态库so并用C调用2.1、python与C大迂回战略获取动态库方法1)将python方法打包成库给python调用2)再将1的程序方法再使用C调用python.h的语法方法再进行封装3)步骤2调用里面还有python.h的语法方法4)最后将步骤3的进行纯c的调用。2.2、C大迂回调用python3原创 2022-04-03 17:55:45 · 1631 阅读 · 0 评论 -
AI模型设计:完美实现C语言调用python训练的tensorflow2.5-gpu循环神经网络模型并进行预测
ck:AI模型设计:C语言版 TensorFlow2.x安装与使用train.py:import numpy as npimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers, Sequentialfrom tensorflow.keras.layers import Dense, LSTM, InputLayer, Bidirectional, TimeDistributed,原创 2022-03-16 17:34:36 · 2556 阅读 · 0 评论 -
C/C++使用技巧(二十二):再谈C/C++多文件编译生成与调用的静态库/动态库[本文所有源码分享]
参考往期文章:C++使用技巧(十):C++编译生成与调用自定义静态库/动态库脚本介绍与运行:#.out是可执行文件,相当于win上的exe;#.o是编译中间目标文件,相当于win上的.obj;#.a是静态库,多个.o练链接得到,用于静态链接;#.so是共享库,用于动态链接,相当于win上.dll;# 注意:在用-o和-c的时候, -c不要指定多个文件#g++ : error : cannot specify -o with -c, -S or -E with multiple files原创 2022-03-16 11:09:58 · 2194 阅读 · 0 评论 -
AI模型设计:配置C++版本pytorch(libtorch 1.12)开发环境以及demo源码的实现
目录1、安装与环境配置2、工程目录demo实现3、附件下载libtorch包位置参考1、安装与环境配置配置libpytorch c++参考:https://pytorch.org/cppdocs/installing.htmlwget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zipunzip libtorch-shared-with-deps-latest.zipPYTO原创 2022-03-12 11:27:58 · 4176 阅读 · 0 评论 -
AI模型设计:安装C++版本的libtensorflow(1.10~2.6.0)以及TFC++ demo源码的实现
1、安装的前提参考bazel源码编译Tensorflow:https://blog.csdn.net/wzl1997/article/details/90106575Bazel编译tensorflow:https://www.cnblogs.com/juluwangshier/p/13307048.html?ivk_sa=1024320uwin10 + bazel-0.20.0 + tensorflow-1.13.1 编译tensorflow GPU版本的C++库:https://blog.csdn.原创 2022-03-11 10:22:23 · 2504 阅读 · 3 评论 -
AI模型设计:C++实现深度学习神经网络模型及源码分享
参考:C++实现的简单BP神经网络:https://blog.csdn.net/u0146590220基于c++实现一个简单的神经网络:https://blog.csdn.net/wxplol/article/details2C++ 实现神经网络:https://blog.csdn.net/wutongthucs/a10C++调用python训练的神经网络模型(tensorflow训练,opencv调用):https://blog.csdn.net/pmj110119/artitm_relevant原创 2022-03-09 14:48:46 · 1674 阅读 · 0 评论 -
AI模型设计:yolov1+darknet+yolov2,3,4,5,X全系列资料汇总[源码仓库]标星收藏
欢迎关注,记得转发点赞评论分享,标星github,谢谢!源码链接:https://github.com/KangChou/Cver4s原创 2022-01-29 10:20:14 · 3845 阅读 · 0 评论 -
AI模型设计:C语言实现socket发送与接受深度学习文本数据集
编译gcc server.c -o servergcc client.c -o clientserver.c#include <sys/socket.h>#include <netinet/in.h>#include <arpa/inet.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <errno.h>#includ原创 2022-01-14 11:35:13 · 499 阅读 · 0 评论 -
AI模型设计:完美demo实现C调用python的tensorflow模型pb(附件源码python与C/C++动态库互相调用)
目录1、环境配置前提条件2、构建项目解决以上make缺少libtensorflow.so动态库的问题3、python生成pd模型4、C调用pd模型进行预测1、环境配置前提条件ubuntu16.04+python3.61)、C 语言版 TensorFlow2.4安装与使用2)、视觉目标检测-01:OpenCV安装与cmake配置2、构建项目项目来自:https://github.com/skylook/tensorflow_cpp完成以上过程后开始编译python生成pd模型:tensorfl原创 2022-01-07 16:00:08 · 1649 阅读 · 0 评论 -
AI模型设计必备:PyTorch与TensorFlow模型C++与python实现学习资料
在生产中转换 PyTorch 模型:PyTorch 生产级教程[太棒了]通往 1.0 之路:生产就绪的 PyTorchPyTorch 1.0 跟踪 JIT 和 LibTorch C++ API 将 PyTorch 集成到 NodeJS [好文章]PyTorch 中的模型服务PyTorch 夏季黑客马拉松[非常重要]使用 Flask 部署 PyTorch 和构建 REST API [重要]PyTorch 模型识别部署在烧瓶上的热狗和非热狗在 C++ 中将 PyTorch原创 2022-01-06 17:46:46 · 1561 阅读 · 0 评论 -
AI模型设计:C语言版 TensorFlow2.x安装与使用
目录下载解压构建与demo实现编译参考来源下载TensorFlow C 库 网址LinuxLinux(仅支持 CPU) https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.4.0.tar.gzLinux(支持 GPU) https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linu原创 2022-01-05 14:39:11 · 716 阅读 · 0 评论