面试笔试记录

CVTE

数据挖掘

1面电话面试

聊了简历上的项目,根据项目问了一些相关的问题。

LSTM跟text-CNN的主要区别:主要还是计算效率的问题,毕竟lstm不能并行运算。(上交提出了SRNN可以进行并行运算)

聊了一下BERT模型。还有NER和CRF。

 

2面现场面试

两个技术面试官,所以重新讨论了一下项目上的东西。

我自己项目中推荐的冷启动问题

问了RNN,LSTM,Transformer三个模型的实际效果(没有实际工程项目的我跪了,只能靠理解说了)

继续问RNN和LSTM为何被CNN取代(效率问题)

情景题:大概10000个数学课件资料样本,设计一个方案,将这些课件按照不同章节进行分类(无监督分类问题)

自己的答案:pca+kmeans 或 主题生成模型(k值太大时kmeans不行,面试官说按他理解主题生成模型可能难以区分小节)

面试官给的答案:不是单个模型能够解决的问题,通过分层及类似增量学习的方法去构建整个pipeline

连算法题都不考???浪费了车钱算了。

------------------------------------------------------------------

创景咨询

机器学习

1面 笔试+技术人员面试

笔试:选择题考了python的数据类型问题(浮点,sys.argv[]),linux的基本操作(vim的;q :q! :w :wq, 删除非空文档rm -rf dict ),以及机器学习的基本知识。填空题考了k-means,auc,back propagation。

面试就是聊项目,没什么好说的。

2面 面试(更高一级的技术人员?)

很愉悦的聊天,基本上就是测人品,最后象征性问了点技术问题。

3面 boss直面

是个懂技术的老板,说了挺久graph的问题,捉了一个项目上蛮尖锐的问题来说。

最后还出了一道智力题和数学题:1)2个筛子拼一个只有日期的日历。

                                                      2)100个人每次报单数的去掉,最后剩下的是第几个人。

最后HR回复说pending进池子,拜拜

-------------------------------------------------------------------

中科院软件

数据分析

直接问一大堆情景题,技术官看起来对deep learning很有偏见

1.文本相似度

2.PDF提取所需信息<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值