CVTE
数据挖掘
1面电话面试
聊了简历上的项目,根据项目问了一些相关的问题。
LSTM跟text-CNN的主要区别:主要还是计算效率的问题,毕竟lstm不能并行运算。(上交提出了SRNN可以进行并行运算)
聊了一下BERT模型。还有NER和CRF。
2面现场面试
两个技术面试官,所以重新讨论了一下项目上的东西。
我自己项目中推荐的冷启动问题
问了RNN,LSTM,Transformer三个模型的实际效果(没有实际工程项目的我跪了,只能靠理解说了)
继续问RNN和LSTM为何被CNN取代(效率问题)
情景题:大概10000个数学课件资料样本,设计一个方案,将这些课件按照不同章节进行分类(无监督分类问题)
自己的答案:pca+kmeans 或 主题生成模型(k值太大时kmeans不行,面试官说按他理解主题生成模型可能难以区分小节)
面试官给的答案:不是单个模型能够解决的问题,通过分层及类似增量学习的方法去构建整个pipeline
连算法题都不考???浪费了车钱算了。
------------------------------------------------------------------
创景咨询
机器学习
1面 笔试+技术人员面试
笔试:选择题考了python的数据类型问题(浮点,sys.argv[]),linux的基本操作(vim的;q :q! :w :wq, 删除非空文档rm -rf dict ),以及机器学习的基本知识。填空题考了k-means,auc,back propagation。
面试就是聊项目,没什么好说的。
2面 面试(更高一级的技术人员?)
很愉悦的聊天,基本上就是测人品,最后象征性问了点技术问题。
3面 boss直面
是个懂技术的老板,说了挺久graph的问题,捉了一个项目上蛮尖锐的问题来说。
最后还出了一道智力题和数学题:1)2个筛子拼一个只有日期的日历。
2)100个人每次报单数的去掉,最后剩下的是第几个人。
最后HR回复说pending进池子,拜拜
-------------------------------------------------------------------
中科院软件
数据分析
直接问一大堆情景题,技术官看起来对deep learning很有偏见
1.文本相似度
2.PDF提取所需信息<