题意:有三种不同颜色的球,每三个球能组成一个环,但是这三个球不能是同一颜色的球,现在分别告诉你三种颜色的球的个数,球最多能组成多少个环
思路:
分情况讨论
共有这么几种情况
1.只有一种颜色的球
2.只有2种颜色的球,并且个数相等
3.只有2种颜色的球,但是个数不等,并且大的个数小于小的个数的两倍
4.只有2种颜色的球,但是个数不等,并且大的个数大于等于小的个数的两倍
5.有3种颜色的球
结论:
1.直接输出0。
2.个数相等时能得到最大的个数的取法,一定是第一次在第一堆里面取1个,在第二堆里面取2个,第二次在第一堆里面取2个,在第二堆里面取1个。。这样交替进行的
假设第一堆有sum[1]个,那么一定有不等式sum[1]-x<=2*x,也就是x>=sum[1]/3,那么sum[1]-x就是能得到的最大组数。
3.每次在小的那堆里面取一个,在大的那堆里面取2个,直到两堆个数相等,然后就变成的情况。
4最大组数就是小的那堆的个数
5.先用完最小的那一堆,然后就能转化为2,3,4问题了,先每次在第一堆里面取一个,最大那堆里面取2个,直到最大那堆的个数再取2个就小于等于第二堆,或者第一堆被用完
,如果第一堆没有被用完,那么之后就在三堆里面各取一个,直到第一堆用完,之后就转化为问题2,3,4了
#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 200005
#define mod 1000000007
#define LL __int64
int sum[4];
int main()
{
while(~scanf("%d%d%d",&sum[0],&sum[1],&sum[2]))
{
int ans=0;
sort(sum,sum+3);
int t1=sum[2]-sum[1];
int t2=sum[1]-sum[0];
if(sum[0]==sum[1] && sum[0]==0)
{
printf("0\n");continue;
}
t1=t1/2;
if(t1<=sum[0])
{
ans+=t1;
sum[0]-=t1;
sum[2]-=t1*2;
ans+=sum[0];
sum[1]-=sum[0];
sum[2]-=sum[0];
sum[0]=0;
}
else
{
ans+=sum[0];
sum[2]-=sum[0]*2;
sum[0]=0;
}
t1=sum[2]-sum[1];
if(sum[2]>=sum[1]*2)
ans+=sum[1];
else
{
ans+=sum[2]-sum[1];
sum[1]-=(sum[2]-sum[1]);
if(sum[1]%3)
ans+=sum[1]-sum[1]/3-1;
else
ans+=sum[1]-sum[1]/3;
}
printf("%d\n",ans);
}
return 0;
}