把第一行的233数列全部左移一位就可以推出一个递推矩阵来
比如输入的是
3 7
23 47 16
可以构造成
B[0][0]=233
B[1][0]=23
B[2][0]=47
B[3][0]=16
B[4][0]=3
递推矩阵A:
10 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 0 0 1
然后就是矩阵(A^m)*B第n项就是答案
我的代码
#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 100005
#define mod 10000007
#define FOR(i,s,t) for(int i=(s);i<=(t);++i)
#define LL __int64
LL n,m;
typedef vector<LL>vec;
typedef vector<vec> mat;
mat A(15,vec(15)),B(15,vec(15)),C(15,vec(15));
void init()
{
A[0][0]=10;
for(int i=1;i<=n;i++)
A[0][i]=0;
A[0][n+1]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=n+1;j++)
{
if(j<=i)
A[i][j]=1;
else
A[i][j]=0;
}
}
for(int i=0;i<=n;i++)
A[n+1][i]=0;
A[n+1][n+1]=1;
}
mat mul(mat &a,mat &b)
{
mat c(a.size(),vec(a.size()));
for(int i=0;i<=n+1;i++)
{
for(int j=0;j<=n+1;j++)
{
// printf("af\n");
for(int k=0;k<a[0].size();k++)
c[i][k]=(c[i][k]+a[i][j]*b[j][k])%mod;
}
}
return c;
}
mat pow(mat a,LL K)
{
mat b(a.size(),vec(a.size()));
for(int i=0;i<=n+1;i++)
b[i][i]=1;
while(K)
{
if(K&1) b=mul(b,a);
a=mul(a,a);
K>>=1;
//printf("asfsa\n");
}
return b;
}
int main()
{
while(~scanf("%I64d%I64d",&n,&m))
{
B[0][0]=233;
for(int i=1;i<=n;i++)
scanf("%I64d",&B[i][0]);
B[n+1][0]=3;
init();
/* for(int i=0;i<=n+1;i++)
{
for(int j=0;j<=n+1;j++)
printf("%I64d ",A[i][j]);
printf("\n");
}*/
C=pow(A,m);
LL ans=0;
/* for(int i=0;i<=n+1;i++)
{
for(int j=0;j<=n+1;j++)
printf("%I64d ",C[i][j]);
printf("\n");
}*/
for(int i=0;i<=n+1;i++)
ans=(ans+C[n][i]*B[i][0])%mod;
printf("%I64d\n",ans);
}
return 0;
}