题意就是计算给出的公式
我用的l[i]表示ai向前碰到的第一个因子位置用r[i]表示ai向后碰到的第一个因子位置
然后ai能被加的次数就是(i-l[i]-1)*(r[i]-i)+(r[i]-i-1)+1,一个遍历加完就ok了
#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 100005
#define mod 1000000007
#define LL unsigned long long
#define max_log 20
int kep[max_n];
int l[max_n];
int r[max_n];
int vis[max_n];
void init()
{
for(int i=0;i<=100000;i++)
vis[i]=-2;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
LL ans=0;
for(int i=0;i<n;i++)
{
l[i]=-1;
r[i]=n;
scanf("%d",&kep[i]);
}
init();
for(int i=0;i<n;i++)
{
if(vis[kep[i]]!=-2)
l[i]=vis[kep[i]];
for(int j=1;j*kep[i]<=10000;j++)
vis[j*kep[i]]=i;
}
init();
for(int i=n-1;i>=0;i--)
{
if(vis[kep[i]]!=-2)
r[i]=vis[kep[i]];
for(int j=1;j*kep[i]<=100000;j++)
vis[j*kep[i]]=i;
}
for(LL i=0;i<n;i++)
ans=(ans+(i-l[i]-1)*(r[i]-i)+(r[i]-i-1))%mod;
ans=(ans+n)%mod;
printf("%lld\n",ans);
}
return 0;
}