最后一场多校 hdu 5288 OO’s Sequence

题意就是计算给出的公式

我用的l[i]表示ai向前碰到的第一个因子位置用r[i]表示ai向后碰到的第一个因子位置

然后ai能被加的次数就是(i-l[i]-1)*(r[i]-i)+(r[i]-i-1)+1,一个遍历加完就ok了


#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 100005
#define mod  1000000007
#define LL  unsigned long long
#define max_log 20
int kep[max_n];
int l[max_n];
int r[max_n];
int vis[max_n];
void init()
{
    for(int i=0;i<=100000;i++)
    vis[i]=-2;
}
int main()
{
	int n;
	while(~scanf("%d",&n))
	{

	    LL ans=0;
	    for(int i=0;i<n;i++)
	    {
	        l[i]=-1;
	        r[i]=n;
            scanf("%d",&kep[i]);
	    }
        init();
	    for(int i=0;i<n;i++)
	    {
	        if(vis[kep[i]]!=-2)
	        l[i]=vis[kep[i]];
	        for(int j=1;j*kep[i]<=10000;j++)
	            vis[j*kep[i]]=i;
	    }
	    init();
	    for(int i=n-1;i>=0;i--)
	    {
	        if(vis[kep[i]]!=-2)
	        r[i]=vis[kep[i]];
	        for(int j=1;j*kep[i]<=100000;j++)
	            vis[j*kep[i]]=i;
	    }
	    for(LL i=0;i<n;i++)
	        ans=(ans+(i-l[i]-1)*(r[i]-i)+(r[i]-i-1))%mod;
	    ans=(ans+n)%mod;
	    printf("%lld\n",ans);
	}
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值