2015长春网络赛1003 HDU 5439 Aggregated Counting

题目大意是说给你一个序列(其实这个序列叫做哥伦布序列)

这个序列是一个自相关的序列a(n)表示这个序列中n出现了a(n)次,给定a[1]=1,a[2]=2

现在要求的是G[i],G[i]表示的是最后一个出现次数为i的数的下标

比如数列a=1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6,

因为a[11]=5;

所以G[3]=11;

5是数列里面出现次数为3的最后一个数,它的下标为11


我们可以推出G[i]=1*a[1]+2*a[2]+3*a[3]+4*a[4].....+i*a[i];

也就是说G[i]其实就是长度为1的数总数+长度为2的数的总数+长度为3的数的总数+。。。长度为i的数的总数


那么我们现在第一步要做的应该就是求出a[i]来,要是按照a序列这样递推预处理的话,本题规模太大,一定是会超时的


我这里借鉴了一种通过先求a()的反函数,然后再求反函数的反函数来得到a[i]的方法,虽然听起来好像很绕,其实写起来还是比较简单的

详细写法我就不写了,看代码一下就能看出来的


得到a[i]之后我们要做的就是求G[i]了,当然递推的话也是会超时的,我们先来观察一下把G[i]展开带入后会有什么变化


G[1]=1*1

G[2]=1*1+2*2;

G[3]=1*1+2*2+3*2;

G[4]=1*1+2*2+3*2+4*3;

G[5]=1*1+2*2+3*2+4*3+5*3;

G[6]=1*1+2*2+3*2+4*3+5*3+6*4;

G[7]=1*1+2*2+3*2+4*3+5*3+6*4+7*4;

G[8]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4;

G[9]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4+9*5;

G[10]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4+9*5+10*5;

..........


我们先以G[10]为例

先把合并一下同类项,我们会发现一个神奇的事情发生了

G[10]=1*1+(2+3)*2+(4+5)*3+(6+7+8)*4+(9+10)*5;


我们发现G[i]可以写成x1*1+x2*2+x3*3+x4*4...+xa(i)*a(i)的形式

x1=1                      个数为1等于a(1)

x2=2+3                 个数为2等于a(2)

x3=4+5                 个数为2等于a(3)

x4=6+7+8             个数为3等于a(4)


既然都找到了这种规律了那么我们就能做出一些预处理

num[i]表示x1*1+x2*2+x3*3+x4*4...+x*i

index[i]表示xi

lt[i]表示xi+1最左边的数的下标,比如lt[1]=2,lt[2]=4,lt[3]=6


上面的这些东西都可以在sqrt(n)时间内预处理出来


然后我们就可以得出G[n]等于

    int  xx=a(n);
    ans=ans+num[xx-1];

    ans=ans+(                (x-lt[xx-1]+1)*lt[xx-1]          +     (x-lt[xx-1]+1)*(x-lt[xx-1])/2)             )*xx;

#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 100005
#define mod  1000000007
#define LL   long long
#define max_log 20
const int M = 700000;
long long g[M];
LL num[M];
LL index[M];
LL lt[M];
LL a(int x)
{
    return (lower_bound(g + 1, g + M, x) - g);
}
void init()
{
    g[1] = 1;
    g[2] = 3;
    for (LL i = 3; i < M; ++i)
        g[i] = g[i - 1] + (lower_bound(g + 1, g + i, i) - g);
    LL l=1;
    for(LL i=1;i<M;i++)
    {
        LL len=a(i);
        index[i]=(l*len%mod+((len-1)*len/2)%mod)%mod;
        num[i]=(num[i-1]+i*index[i]%mod)%mod;
        l=l+len;
        lt[i]=l;
    }
}
void solve(LL x)
{
    LL ans=0;
    LL xx=a(x);
    ans=(ans+num[xx-1])%mod;
    ans=(ans+xx*((x-lt[xx-1]+1)*lt[xx-1]%mod+((x-lt[xx-1]+1)*(x-lt[xx-1])/2)%mod)%mod)%mod;
    printf("%lld\n",ans);
}
int main()
{
    init();
    int T;
    scanf("%d",&T);
    while(T--)
    {
        LL n;
        scanf("%lld",&n);
        solve(n);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值