题目大意是说给你一个序列(其实这个序列叫做哥伦布序列)
这个序列是一个自相关的序列a(n)表示这个序列中n出现了a(n)次,给定a[1]=1,a[2]=2
现在要求的是G[i],G[i]表示的是最后一个出现次数为i的数的下标
比如数列a=1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6,
因为a[11]=5;
所以G[3]=11;
5是数列里面出现次数为3的最后一个数,它的下标为11
我们可以推出G[i]=1*a[1]+2*a[2]+3*a[3]+4*a[4].....+i*a[i];
也就是说G[i]其实就是长度为1的数总数+长度为2的数的总数+长度为3的数的总数+。。。长度为i的数的总数
那么我们现在第一步要做的应该就是求出a[i]来,要是按照a序列这样递推预处理的话,本题规模太大,一定是会超时的
我这里借鉴了一种通过先求a()的反函数,然后再求反函数的反函数来得到a[i]的方法,虽然听起来好像很绕,其实写起来还是比较简单的
详细写法我就不写了,看代码一下就能看出来的
得到a[i]之后我们要做的就是求G[i]了,当然递推的话也是会超时的,我们先来观察一下把G[i]展开带入后会有什么变化
G[1]=1*1
G[2]=1*1+2*2;
G[3]=1*1+2*2+3*2;
G[4]=1*1+2*2+3*2+4*3;
G[5]=1*1+2*2+3*2+4*3+5*3;
G[6]=1*1+2*2+3*2+4*3+5*3+6*4;
G[7]=1*1+2*2+3*2+4*3+5*3+6*4+7*4;
G[8]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4;
G[9]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4+9*5;
G[10]=1*1+2*2+3*2+4*3+5*3+6*4+7*4+8*4+9*5+10*5;
..........
我们先以G[10]为例
先把合并一下同类项,我们会发现一个神奇的事情发生了
G[10]=1*1+(2+3)*2+(4+5)*3+(6+7+8)*4+(9+10)*5;
我们发现G[i]可以写成x1*1+x2*2+x3*3+x4*4...+xa(i)*a(i)的形式
而
x1=1 个数为1等于a(1)
x2=2+3 个数为2等于a(2)
x3=4+5 个数为2等于a(3)
x4=6+7+8 个数为3等于a(4)
既然都找到了这种规律了那么我们就能做出一些预处理
num[i]表示x1*1+x2*2+x3*3+x4*4...+x*i
index[i]表示xi
lt[i]表示xi+1最左边的数的下标,比如lt[1]=2,lt[2]=4,lt[3]=6
上面的这些东西都可以在sqrt(n)时间内预处理出来
然后我们就可以得出G[n]等于
int xx=a(n);
ans=ans+num[xx-1];
ans=ans+( (x-lt[xx-1]+1)*lt[xx-1] + (x-lt[xx-1]+1)*(x-lt[xx-1])/2) )*xx;
#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 100005
#define mod 1000000007
#define LL long long
#define max_log 20
const int M = 700000;
long long g[M];
LL num[M];
LL index[M];
LL lt[M];
LL a(int x)
{
return (lower_bound(g + 1, g + M, x) - g);
}
void init()
{
g[1] = 1;
g[2] = 3;
for (LL i = 3; i < M; ++i)
g[i] = g[i - 1] + (lower_bound(g + 1, g + i, i) - g);
LL l=1;
for(LL i=1;i<M;i++)
{
LL len=a(i);
index[i]=(l*len%mod+((len-1)*len/2)%mod)%mod;
num[i]=(num[i-1]+i*index[i]%mod)%mod;
l=l+len;
lt[i]=l;
}
}
void solve(LL x)
{
LL ans=0;
LL xx=a(x);
ans=(ans+num[xx-1])%mod;
ans=(ans+xx*((x-lt[xx-1]+1)*lt[xx-1]%mod+((x-lt[xx-1]+1)*(x-lt[xx-1])/2)%mod)%mod)%mod;
printf("%lld\n",ans);
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
LL n;
scanf("%lld",&n);
solve(n);
}
return 0;
}