动态规划
注:本文代码来自于代码随想录
509. 斐波那契数
Python
动态规划(版本一)
class Solution:
def fib(self, n: int) -> int:
# 排除 Corner Case
if n == 0:
return 0
# 创建 dp table
dp = [0] * (n + 1)
# 初始化 dp 数组
dp[0] = 0
dp[1] = 1
# 遍历顺序: 由前向后。因为后面要用到前面的状态
for i in range(2, n + 1):
# 确定递归公式/状态转移公式
dp[i] = dp[i - 1] + dp[i - 2]
# 返回答案
return dp[n]
动态规划(版本二)
class Solution:
def fib(self, n: int) -> int:
if n <= 1:
return n
dp = [0, 1]
for i in range(2, n + 1):
total = dp[0] + dp[1]
dp[0] = dp[1]
dp[1] = total
return dp[1]
动态规划(版本三)
class Solution:
def fib(self, n: int) -> int:
if n <= 1:
return n
prev1, prev2 = 0, 1
for _ in range(2, n + 1):
curr = prev1 + prev2
prev1, prev2 = prev2, curr
return prev2
递归(版本一)
class Solution:
def fib(self, n: int) -> int:
if n < 2:
return n
return self.fib(n - 1) + self.fib(n - 2)
70. 爬楼梯
如果一步可以爬m阶,使用完全背包解决。
Python
动态规划(版本一)
# 空间复杂度为O(n)版本
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 1:
return n
# 不写这一段的话,会报错 list assignment index out of range
dp = [0] * (n + 1)
dp[1] = 1
dp[2] = 2
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
动态规划(版本二)
# 空间复杂度为O(3)版本
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 1:
return n
dp = [0] * 3
dp[1] = 1
dp[2] = 2
for i in range(3, n + 1):
total = dp[1] + dp[2]
dp[1] = dp[2]
dp[2] = total
return dp[2]
动态规划(版本三)
# 空间复杂度为O(1)版本
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 1:
return n
prev1 = 1
prev2 = 2
for i in range(3, n + 1):
total = prev1 + prev2
prev1 = prev2
prev2 = total
return prev2
746. 使用最小花费爬楼梯
特别需要注意范围,总是错。
Python
动态规划(版本一)
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
dp = [0] * (len(cost) + 1)
dp[0] = 0 # 初始值,表示从起点开始不需要花费体力
dp[1] = 0 # 初始值,表示经过第一步不需要花费体力
for i in range(2, len(cost) + 1):
# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
return dp[len(cost)] # 返回到达楼顶的最小花费
动态规划(版本二)
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
dp0 = 0 # 初始值,表示从起点开始不需要花费体力
dp1 = 0 # 初始值,表示经过第一步不需要花费体力
for i in range(2, len(cost) + 1):
# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
# 选择其中花费体力较小的路径,加上当前步的花费,得到当前步的最小花费
dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2])
dp0 = dp1 # 更新dp0为前一步的值,即上一次循环中的dp1
dp1 = dpi # 更新dp1为当前步的最小花费
return dp1 # 返回到达楼顶的最小花费
动态规划(版本三)
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
dp = [0] * len(cost)
dp[0] = cost[0] # 第一步有花费
dp[1] = cost[1]
for i in range(2, len(cost)):
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
# 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
return min(dp[-1], dp[-2])
动态规划(版本四)
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
n = len(cost)
prev_1 = cost[0] # 前一步的最小花费
prev_2 = cost[1] # 前两步的最小花费
for i in range(2, n):
current = min(prev_1, prev_2) + cost[i] # 当前位置的最小花费
prev_1, prev_2 = prev_2, current # 更新前一步和前两步的最小花费
return min(prev_1, prev_2) # 最后一步可以理解为不用花费,取倒数第一步和第二步的最少值
62.不同路径
初始值在上面,左面。所以从上往下,从左往右遍历。
Python
递归
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)
动态规划(版本一)
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个二维列表用于存储唯一路径数
dp = [[0] * n for _ in range(m)]
# 设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 计算每个单元格的唯一路径数
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
# 返回右下角单元格的唯一路径数
return dp[m - 1][n - 1]
动态规划(版本二)
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个一维列表用于存储每列的唯一路径数
dp = [1] * n
# 计算每个单元格的唯一路径数
for j in range(1, m):
for i in range(1, n):
dp[i] += dp[i - 1]
# 返回右下角单元格的唯一路径数
return dp[n - 1]
数论
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
numerator = 1 # 分子
denominator = m - 1 # 分母
count = m - 1 # 计数器,表示剩余需要计算的乘积项个数
t = m + n - 2 # 初始乘积项
while count > 0:
numerator *= t # 计算乘积项的分子部分
t -= 1 # 递减乘积项
while denominator != 0 and numerator % denominator == 0:
numerator //= denominator # 约简分子
denominator -= 1 # 递减分母
count -= 1 # 计数器减1,继续下一项的计算
return numerator # 返回最终的唯一路径数
63. 不同路径 II
Python
动态规划(版本一) 卡哥讲思路讲的是这一种。
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
return 0
dp = [[0] * n for _ in range(m)]
for i in range(m):
# 这里写作range(1,m)是错的
if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0
dp[i][0] = 1
else:
break
for j in range(n):
# 这里写作range(1,n)是错的
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
动态规划(版本二)
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid) # 网格的行数
n = len(obstacleGrid[0]) # 网格的列数
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
# 如果起点或终点有障碍物,直接返回0
return 0
dp = [[0] * n for _ in range(m)] # 创建一个二维列表用于存储路径数
# 设置起点的路径数为1
dp[0][0] = 1 if obstacleGrid[0][0] == 0 else 0
# 计算第一列的路径数
for i in range(1, m):
if obstacleGrid[i][0] == 0:
dp[i][0] = dp[i - 1][0]
# 计算第一行的路径数
for j in range(1, n):
if obstacleGrid[0][j] == 0:
dp[0][j] = dp[0][j - 1]
# 计算其他位置的路径数
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1] # 返回终点的路径数
动态规划(版本三)
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
if obstacleGrid[0][0] == 1:
return 0
dp = [0] * len(obstacleGrid[0]) # 创建一个一维列表用于存储路径数
# 初始化第一行的路径数
for j in range(len(dp)):
if obstacleGrid[0][j] == 1:
dp[j] = 0
elif j == 0:
dp[j] = 1
else:
dp[j] = dp[j - 1]
# 计算其他行的路径数
for i in range(1, len(obstacleGrid)):
for j in range(len(dp)):
if obstacleGrid[i][j] == 1:
dp[j] = 0
elif j != 0:
dp[j] = dp[j] + dp[j - 1]
return dp[-1] # 返回最后一个元素,即终点的路径数
动态规划(版本四)
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
if obstacleGrid[0][0] == 1:
return 0
m, n = len(obstacleGrid), len(obstacleGrid[0])
dp = [0] * n # 创建一个一维列表用于存储路径数
# 初始化第一行的路径数
for j in range(n):
if obstacleGrid[0][j] == 1:
break
dp[j] = 1
# 计算其他行的路径数
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[0] = 0
for j in range(1, n):
if obstacleGrid[i][j] == 1:
dp[j] = 0
else:
dp[j] += dp[j - 1]
return dp[-1] # 返回最后一个元素,即终点的路径数
动态规划(版本五)
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
if obstacleGrid[0][0] == 1:
return 0
m, n = len(obstacleGrid), len(obstacleGrid[0])
dp = [0] * n # 创建一个一维列表用于存储路径数
# 初始化第一行的路径数
for j in range(n):
if obstacleGrid[0][j] == 1:
break
dp[j] = 1
# 计算其他行的路径数
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[0] = 0
for j in range(1, n):
if obstacleGrid[i][j] == 1:
dp[j] = 0
continue
dp[j] += dp[j - 1]
return dp[-1] # 返回最后一个元素,即终点的路径数
343. 整数拆分
Python
动态规划(版本一)
class Solution:
# 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
# 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
# 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
def integerBreak(self, n):
dp = [0] * (n + 1) # 创建一个大小为n+1的数组来存储计算结果
dp[2] = 1 # 初始化dp[2]为1,因为当n=2时,只有一个切割方式1+1=2,乘积为1
# 从3开始计算,直到n
for i in range(3, n + 1):
# 遍历所有可能的切割点
for j in range(1, i // 2 + 1):
# 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j)
# 固定i之后取各种i情况下的dp[i]的最大值。
return dp[n] # 返回最终的计算结果
动态规划(版本二)
class Solution:
def integerBreak(self, n):
if n <= 3:
return 1 * (n - 1) # 对于n小于等于3的情况,返回1 * (n - 1)
dp = [0] * (n + 1) # 创建一个大小为n+1的数组来存储最大乘积结果
dp[1] = 1 # 当n等于1时,最大乘积为1
dp[2] = 2 # 当n等于2时,最大乘积为2
dp[3] = 3 # 当n等于3时,最大乘积为3
# 从4开始计算,直到n
for i in range(4, n + 1):
# 遍历所有可能的切割点
for j in range(1, i // 2 + 1):
# 计算切割点j和剩余部分(i - j)的乘积,并与之前的结果进行比较取较大值
dp[i] = max(dp[i], dp[i - j] * dp[j])
return dp[n] # 返回整数拆分的最大乘积结果
贪心
class Solution:
def integerBreak(self, n):
if n == 2: # 当n等于2时,只有一种拆分方式:1+1=2,乘积为1
return 1
if n == 3: # 当n等于3时,只有一种拆分方式:2+1=3,乘积为2
return 2
if n == 4: # 当n等于4时,有两种拆分方式:2+2=4和1+1+1+1=4,乘积都为4
return 4
result = 1
while n > 4:
result *= 3 # 每次乘以3,因为3的乘积比其他数字更大
n -= 3 # 每次减去3
result *= n # 将剩余的n乘以最后的结果
return result
96.不同的二叉搜索树
发现递推公式:
dp[3] = dp[0]*dp[2] + dp[1]*dp[1] + dp[2]*dp[0]
根基在于dp[0]
从小到大遍历
Python
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1) # 创建一个长度为n+1的数组,初始化为0
dp[0] = 1 # 当n为0时,只有一种情况,即空树,所以dp[0] = 1
for i in range(1, n + 1): # 遍历从1到n的每个数字
for j in range(1, i + 1): # 对于每个数字i,计算以i为根节点的二叉搜索树的数量
# 用j来枚举所有头节点的情况。左边j-1个节点,右边i-j个节点。
dp[i] += dp[j - 1] * dp[i - j] # 利用动态规划的思想,累加左子树和右子树的组合数量
return dp[n] # 返回以1到n为节点的二叉搜索树的总数量
01背包理论基础
dp[i][j]
的含义:[0,i]
的物品任取,放入容量为j
的背包。
不放物品i
的最大价值:dp[i-1][j]
放物品i
的最大价值:dp[i-1][j-weight[i]] + value[i]
非0下标初始化成什么都可以。
Python
无参数版
def test_2_wei_bag_problem1():
weight = [1, 3, 4]
value = [15, 20, 30]
bagweight = 4
# 二维数组
dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
# 注意是(bagweight + 1)列
# 初始化
for j in range(weight[0], bagweight + 1):
dp[0][j] = value[0]
# 如果背包容量比物品0的重量小,那么就不会进入这个循环来重新初始化第一行,直接用0(创建二维数组)值
# weight数组的大小就是物品个数
for i in range(1, len(weight)): # 遍历物品 # i=0前面已经初始化了
for j in range(bagweight + 1): # 遍历背包容量
if j < weight[i]:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
print(dp[len(weight) - 1][bagweight])
# 注意是len(weight)-1
test_2_wei_bag_problem1()
有参数版
def test_2_wei_bag_problem1(weight, value, bagweight):
# 二维数组
dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
# 初始化
for j in range(weight[0], bagweight + 1):
dp[0][j] = value[0]
# weight数组的大小就是物品个数
for i in range(1, len(weight)): # 遍历物品
for j in range(bagweight + 1): # 遍历背包容量
if j < weight[i]:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
return dp[len(weight) - 1][bagweight]
if __name__ == "__main__":
weight = [1, 3, 4]
value = [15, 20, 30]
bagweight = 4
result = test_2_wei_bag_problem1(weight, value, bagweight)
print(result)
01背包理论基础(滚动数组)
逆序才能拿到上一轮的背包数据,正序只能计算本轮背包不断加塞的数据
Python
无参版
def test_1_wei_bag_problem():
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
# 初始化
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量 背包是倒序遍历,保证每个物品只被添加过一次
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bagWeight])
test_1_wei_bag_problem()
有参版
def test_1_wei_bag_problem(weight, value, bagWeight):
# 初始化
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
return dp[bagWeight]
if __name__ == "__main__":
weight = [1, 3, 4]
value = [15, 20, 30]
bagweight = 4
result = test_1_wei_bag_problem(weight, value, bagweight)
print(result)
416. 分割等和子集
居然能想到用背包,太抽象了!
重量和价值一样
dp[target] == target
代表装满了
Python:
卡哥版
class Solution:
def canPartition(self, nums: List[int]) -> bool:
_sum = 0
# dp[i]中的i表示背包内总和
# 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
# 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
dp = [0] * 10001
for num in nums:
_sum += num
# 也可以使用内置函数一步求和
# _sum = sum(nums)
if _sum % 2 == 1:
return False
target = _sum // 2
# 开始 0-1背包
for num in nums:
for j in range(target, num - 1, -1): # 每一个元素一定是不可重复放入,所以从大到小遍历
# j>=nums[i] j要是比它还小,就连物品i也放不进去,这时候再去遍历背包就没有意义。
dp[j] = max(dp[j], dp[j - num] + num)
# 集合中的元素正好可以凑成总和target
if dp[target] == target:
return True
return False
卡哥版(简化版)
class Solution:
def canPartition(self, nums: List[int]) -> bool:
if sum(nums) % 2 != 0:
return False
target = sum(nums) // 2
dp = [0] * (target + 1)
for num in nums:
for j in range(target, num-1, -1):
dp[j] = max(dp[j], dp[j-num] + num)
return dp[-1] == target
二维DP版
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]
# 初始化第一行(空子集可以得到和为0)
for i in range(len(nums) + 1):
dp[i][0] = True
for i in range(1, len(nums) + 1):
for j in range(1, target_sum + 1):
if j < nums[i - 1]:
# 当前数字大于目标和时,无法使用该数字
dp[i][j] = dp[i - 1][j]
else:
# 当前数字小于等于目标和时,可以选择使用或不使用该数字
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
return dp[len(nums)][target_sum]
一维DP版
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [False] * (target_sum + 1)
dp[0] = True
for num in nums:
# 从target_sum逆序迭代到num,步长为-1
for i in range(target_sum, num - 1, -1):
dp[i] = dp[i] or dp[i - num]
return dp[target_sum]
1049.最后一块石头的重量II
dp[j]
背包容量为j
所背的最大价值。物品的价值就是重量。
Python:
卡哥版
class Solution:
def lastStoneWeightII(self, stones: List[int]) -> int:
dp = [0] * 15001
total_sum = sum(stones)
target = total_sum // 2
for stone in stones: # 遍历物品
for j in range(target, stone - 1, -1): # 遍历背包
dp[j] = max(dp[j], dp[j - stone] + stone)
return total_sum - dp[target] - dp[target]
卡哥版(简化版)
class Solution:
def lastStoneWeightII(self, stones):
total_sum = sum(stones)
target = total_sum // 2
dp = [0] * (target + 1)
for stone in stones:
for j in range(target, stone - 1, -1):
dp[j] = max(dp[j], dp[j - stone] + stone)
return total_sum - 2* dp[-1]
二维DP版
class Solution:
def lastStoneWeightII(self, stones: List[int]) -> int:
total_sum = sum(stones)
target = total_sum // 2
# 创建二维dp数组,行数为石头的数量加1,列数为target加1
# dp[i][j]表示前i个石头能否组成总重量为j
dp = [[False] * (target + 1) for _ in range(len(stones) + 1)]
# 初始化第一列,表示总重量为0时,前i个石头都能组成
for i in range(len(stones) + 1):
dp[i][0] = True
for i in range(1, len(stones) + 1):
for j in range(1, target + 1):
# 如果当前石头重量大于当前目标重量j,则无法选择该石头
if stones[i - 1] > j:
dp[i][j] = dp[i - 1][j]
else:
# 可选择该石头或不选择该石头
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - stones[i - 1]]
# 找到最大的重量i,使得dp[len(stones)][i]为True
# 返回总重量减去两倍的最接近总重量一半的重量
for i in range(target, -1, -1):
if dp[len(stones)][i]:
return total_sum - 2 * i
return 0
一维DP版
class Solution:
def lastStoneWeightII(self, stones):
total_sum = sum(stones)
target = total_sum // 2
dp = [False] * (target + 1)
dp[0] = True
for stone in stones:
for j in range(target, stone - 1, -1):
# 判断当前重量是否可以通过选择之前的石头得到或选择当前石头和之前的石头得到
dp[j] = dp[j] or dp[j - stone]
for i in range(target, -1, -1):
if dp[i]:
# 返回剩余石头的重量,即总重量减去两倍的最接近总重量一半的重量
return total_sum - 2 * i
return 0
494.目标和
最难的是就算题目放在这里告诉我可以用0-1背包,我还是不知道应该怎么做。
本题要如何使表达式结果为target,
既然为target,那么就一定有 left组合 - right组合 = target。
left + right = sum,而sum是固定的。right = sum - left
公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
target是固定的,sum是固定的,left就可以求出来。
此时问题就是在集合nums中找出和为left的组合。
装满容量为j
的背包有dp[j]
种方法
Python
回溯版
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total == target:
result.append(path[:]) # 将当前路径的副本添加到结果中
# 如果 sum + candidates[i] > target,则停止遍历
for i in range(startIndex, len(candidates)):
if total + candidates[i] > target:
break
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i + 1, path, result)
total -= candidates[i]
path.pop()
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total = sum(nums)
if target > total:
return 0 # 此时没有方案
if (target + total) % 2 != 0:
return 0 # 此时没有方案,两个整数相加时要注意数值溢出的问题
bagSize = (target + total) // 2 # 转化为组合总和问题,bagSize就是目标和
# 以下是回溯法代码
result = []
nums.sort() # 需要对nums进行排序
self.backtracking(nums, bagSize, 0, 0, [], result)
return len(result)
二维DP
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums) # 计算nums的总和
if abs(target) > total_sum:
return 0 # 此时没有方案
if (target + total_sum) % 2 == 1:
return 0 # 此时没有方案
target_sum = (target + total_sum) // 2 # 目标和
# 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]
# 初始化状态
dp[0][0] = 1
# 动态规划过程
for i in range(1, len(nums) + 1):
for j in range(target_sum + 1):
dp[i][j] = dp[i - 1][j] # 不选取当前元素
if j >= nums[i - 1]:
dp[i][j] += dp[i - 1][j - nums[i - 1]] # 选取当前元素
return dp[len(nums)][target_sum] # 返回达到目标和的方案数
一维DP
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums) # 计算nums的总和
if abs(target) > total_sum:
# 注意有绝对值
return 0 # 此时没有方案
if (target + total_sum) % 2 == 1:
return 0 # 此时没有方案
target_sum = (target + total_sum) // 2 # 目标和
dp = [0] * (target_sum + 1) # 创建动态规划数组,初始化为0
dp[0] = 1 # 当目标和为0时,只有一种方案,即什么都不选
for num in nums:
for j in range(target_sum, num - 1, -1):
dp[j] += dp[j - num] # 状态转移方程,累加不同选择方式的数量
return dp[target_sum] # 返回达到目标和的方案数
474.一和零
本题和之前背包问题的区别:本题背包有两个维度:重量A和重量B。
并不是多重背包问题。
用二维dp数组表示dp[i][j]
装了i
个0,j
个1。最多装dp[i][j]
个物品。dp[m][n]
是最终要求的。
Python
DP(版本一)
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(m + 1)] # 创建二维动态规划数组,初始化为0
for s in strs: # 遍历物品
zeroNum = s.count('0') # 统计0的个数
oneNum = len(s) - zeroNum # 统计1的个数
for i in range(m, zeroNum - 1, -1): # 遍历背包容量且从后向前遍历
for j in range(n, oneNum - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1) # 状态转移方程
return dp[m][n]
DP(版本二)
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(m + 1)] # 创建二维动态规划数组,初始化为0
# 遍历物品
for s in strs:
ones = s.count('1') # 统计字符串中1的个数
zeros = s.count('0') # 统计字符串中0的个数
# 遍历背包容量且从后向前遍历
for i in range(m, zeros - 1, -1):
for j in range(n, ones - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1) # 状态转移方程
return dp[m][n]
完全背包理论基础
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件
先遍历物品还是先遍历背包?都一样!
Python:
先遍历物品,再遍历背包(无参版)
def test_CompletePack():
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(weight[i], bagWeight + 1): # 遍历背包容量 正序遍历!
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bagWeight])
test_CompletePack()
先遍历物品,再遍历背包(有参版)
def test_CompletePack(weight, value, bagWeight):
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(weight[i], bagWeight + 1): # 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
return dp[bagWeight]
if __name__ == "__main__":
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
result = test_CompletePack(weight, value, bagWeight)
print(result)
先遍历背包,再遍历物品(无参版)
def test_CompletePack():
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
dp = [0] * (bagWeight + 1)
for j in range(bagWeight + 1): # 遍历背包容量
for i in range(len(weight)): # 遍历物品
if j - weight[i] >= 0:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bagWeight])
test_CompletePack()
先遍历背包,再遍历物品(有参版)
def test_CompletePack(weight, value, bagWeight):
dp = [0] * (bagWeight + 1)
for j in range(bagWeight + 1): # 遍历背包容量
for i in range(len(weight)): # 遍历物品
if j - weight[i] >= 0:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
return dp[bagWeight]
if __name__ == "__main__":
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
result = test_CompletePack(weight, value, bagWeight)
print(result)
518.零钱兑换II
装满容量为j
的背包,有dp[j]
种方法
必须是先遍历物品再遍历背包,这样才是组合。
先遍历背包后遍历物品是排列。
内层循环正序遍历。
Python:
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0]*(amount + 1)
dp[0] = 1
# 遍历物品
for i in range(len(coins)):
# 遍历背包
for j in range(coins[i], amount + 1):
dp[j] += dp[j - coins[i]]
return dp[amount]
377. 组合总和 Ⅳ
本题强调元素之间的顺序,是排列问题。
先遍历背包后遍历物品是排列。
Python:
卡哥版
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1)
dp[0] = 1
for i in range(1, target + 1): # 遍历背包
for j in range(len(nums)): # 遍历物品
if i - nums[j] >= 0:
# 注意这个条件!!!,背包容量i必须要让物品j放得进去。
dp[i] += dp[i - nums[j]]
return dp[target]
优化版
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1) # 创建动态规划数组,用于存储组合总数
dp[0] = 1 # 初始化背包容量为0时的组合总数为1
for i in range(1, target + 1): # 遍历背包容量
for j in nums: # 遍历物品列表
if i >= j: # 当背包容量大于等于当前物品重量时
dp[i] += dp[i - j] # 更新组合总数
return dp[-1] # 返回背包容量为target时的组合总数
二维DP版
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
# dp[][j]和为j的组合的总数
dp = [[0] * (target+1) for _ in nums]
for i in range(len(nums)):
dp[i][0] = 1
# 这里不能初始化dp[0][j]。dp[0][j]的值依赖于dp[-1][j-nums[0]]
for j in range(1, target+1):
for i in range(len(nums)):
if j - nums[i] >= 0:
dp[i][j] = (
# 不放nums[i]
# i = 0 时,dp[-1][j]恰好为0,所以没有特殊处理
dp[i-1][j] +
# 放nums[i]。对于和为j的组合,只有试过全部物品,才能知道有几种组合方式。所以取最后一个物品dp[-1][j-nums[i]]
dp[-1][j-nums[i]]
)
else:
dp[i][j] = dp[i-1][j]
return dp[-1][-1]
70. 爬楼梯(进阶版)
完全背包排列问题
先遍历背包后遍历物品
Python
def climbing_stairs(n,m):
dp = [0]*(n+1) # 背包总容量
dp[0] = 1
# 排列题,注意循环顺序,背包在外物品在内
for j in range(1,n+1):
for i in range(1,m+1):
if j>=i:
dp[j] += dp[j-i] # 这里i就是重量而非index
return dp[n]
if __name__ == '__main__':
n,m = list(map(int,input().split(' ')))
print(climbing_stairs(n,m))
322. 零钱兑换
装满容量为j
的背包,最少需要dp[j]
的物品
Python:
先遍历物品 后遍历背包
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf')] * (amount + 1) # 创建动态规划数组,初始值为正无穷大
dp[0] = 0 # 初始化背包容量为0时的最小硬币数量为0
for coin in coins: # 遍历硬币列表,相当于遍历物品
for i in range(coin, amount + 1): # 遍历背包容量
if dp[i - coin] != float('inf'): # 如果dp[i - coin]不是初始值,则进行状态转移
dp[i] = min(dp[i - coin] + 1, dp[i]) # 更新最小硬币数量
if dp[amount] == float('inf'): # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
return -1
return dp[amount] # 返回背包容量为amount时的最小硬币数量
先遍历背包 后遍历物品
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf')] * (amount + 1) # 创建动态规划数组,初始值为正无穷大
dp[0] = 0 # 初始化背包容量为0时的最小硬币数量为0
for i in range(1, amount + 1): # 遍历背包容量
for j in range(len(coins)): # 遍历硬币列表,相当于遍历物品
if i - coins[j] >= 0 and dp[i - coins[j]] != float('inf'): # 如果dp[i - coins[j]]不是初始值,则进行状态转移
dp[i] = min(dp[i - coins[j]] + 1, dp[i]) # 更新最小硬币数量
if dp[amount] == float('inf'): # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
return -1
return dp[amount] # 返回背包容量为amount时的最小硬币数量
先遍历物品 后遍历背包(优化版)
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf')] * (amount + 1)
dp[0] = 0
for coin in coins:
for i in range(coin, amount + 1): # 进行优化,从能装得下的背包开始计算,则不需要进行比较
# 更新凑成金额 i 所需的最少硬币数量
dp[i] = min(dp[i], dp[i - coin] + 1)
return dp[amount] if dp[amount] != float('inf') else -1
先遍历背包 后遍历物品(优化版)
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf')] * (amount + 1)
dp[0] = 0
for i in range(1, amount + 1): # 遍历背包容量
for coin in coins: # 遍历物品
if i - coin >= 0:
# 更新凑成金额 i 所需的最少硬币数量
dp[i] = min(dp[i], dp[i - coin] + 1)
return dp[amount] if dp[amount] != float('inf') else -1
279.完全平方数
Python:
先遍历背包, 再遍历物品
class Solution:
def numSquares(self, n: int) -> int:
dp = [float('inf')] * (n + 1)
dp[0] = 0
for i in range(1, n + 1): # 遍历背包
for j in range(1, int(i ** 0.5) + 1): # 遍历物品
# 更新凑成数字 i 所需的最少完全平方数数量
dp[i] = min(dp[i], dp[i - j * j] + 1)
return dp[n]
先遍历物品, 再遍历背包
class Solution:
def numSquares(self, n: int) -> int:
dp = [float('inf')] * (n + 1)
dp[0] = 0
for i in range(1, int(n ** 0.5) + 1): # 遍历物品
for j in range(i * i, n + 1): # 遍历背包
# 更新凑成数字 j 所需的最少完全平方数数量
dp[j] = min(dp[j - i * i] + 1, dp[j])
return dp[n]
其他版本
class Solution:
def numSquares(self, n: int) -> int:
# 创建动态规划数组,初始值为最大值
dp = [float('inf')] * (n + 1)
# 初始化已知情况
dp[0] = 0
# 遍历背包容量
for i in range(1, n + 1):
# 遍历完全平方数作为物品
j = 1
while j * j <= i:
# 更新最少完全平方数的数量
dp[i] = min(dp[i], dp[i - j * j] + 1)
j += 1
# 返回结果
return dp[n]
class Solution(object):
def numSquares(self, n):
# 先把可以选的数准备好,更好理解
nums, num = [], 1
while num ** 2 <= n:
nums.append(num ** 2)
num += 1
# dp数组初始化
dp = [float('inf')] * (n + 1)
dp[0] = 0
# 遍历准备好的完全平方数
for i in range(len(nums)):
# 遍历背包容量
for j in range(nums[i], n+1):
dp[j] = min(dp[j], dp[j-nums[i]]+1)
# 返回结果
return dp[-1]
139.单词拆分
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
i表示长度。长度i=1才表示第一个字符。也可以理解为[0:1]包括0不包括1
Python:
回溯
class Solution:
def backtracking(self, s: str, wordSet: set[str], startIndex: int) -> bool:
# 边界情况:已经遍历到字符串末尾,返回True
if startIndex >= len(s):
return True
# 遍历所有可能的拆分位置
for i in range(startIndex, len(s)):
word = s[startIndex:i + 1] # 截取子串
if word in wordSet and self.backtracking(s, wordSet, i + 1):
# 如果截取的子串在字典中,并且后续部分也可以被拆分成单词,返回True
return True
# 无法进行有效拆分,返回False
return False
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
wordSet = set(wordDict) # 转换为哈希集合,提高查找效率
return self.backtracking(s, wordSet, 0)
DP(版本一)
将 wordDict
转换为集合 wordSet
的主要目的是提高查找单词的效率。集合(set
)在 Python 中的查找操作平均时间复杂度为 O(1),而列表(list
)的查找操作时间复杂度为 O(n)。
在wordBreak
函数中,关键步骤是判断 s[j:i]
是否在 wordSet
中存在。这是一个频繁的查找操作,如果使用列表进行查找,每次查找的时间复杂度为 O(n),那么整体时间复杂度会变得较高。但是,如果使用集合进行查找,每次查找的时间复杂度为 O(1),整体效率会大大提高。
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
wordSet = set(wordDict)
# 先转为集合set()
n = len(s)
dp = [False] * (n + 1) # dp[i] 表示字符串的前 i 个字符是否可以被拆分成单词
dp[0] = True # 初始状态,空字符串可以被拆分成单词
for i in range(1, n + 1): # 遍历背包
for j in range(i): # 遍历单词
if dp[j] and s[j:i] in wordSet:
"""
dp[j]:这是一个布尔值,表示从字符串的起始位置到索引 j 之前的子字符串 s[0:j] 是否可以被拆分成字典中的单词。如果 dp[j] 为 True,表示 s[0:j] 可以被拆分成字典中的单词
"""
dp[i] = True # 如果 s[0:j] 可以被拆分成单词,并且 s[j:i] 在单词集合中存在,则 s[0:i] 可以被拆分成单词
break
return dp[n]
DP(版本二)
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
dp = [False]*(len(s) + 1)
dp[0] = True
# 遍历背包
for j in range(1, len(s) + 1):
# 遍历单词
for word in wordDict:
if j >= len(word):
dp[j] = dp[j] or (dp[j - len(word)] and word == s[j - len(word):j])
return dp[len(s)]
DP(剪枝)
class Solution(object):
def wordBreak(self, s, wordDict):
# 先对单词按长度排序
wordDict.sort(key=lambda x: len(x))
n = len(s)
dp = [False] * (n + 1)
dp[0] = True
# 遍历背包
for i in range(1, n + 1):
# 遍历单词
for word in wordDict:
# 简单的 “剪枝”
if len(word) > i:
break
dp[i] = dp[i] or (dp[i - len(word)] and s[i - len(word): i] == word)
return dp[-1]
198.打家劫舍
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
Python:
1维DP
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 0: # 如果没有房屋,返回0
return 0
if len(nums) == 1: # 如果只有一个房屋,返回其金额
return nums[0]
# 创建一个动态规划数组,用于存储最大金额
dp = [0] * len(nums) # 由于dp[i]包含了i
dp[0] = nums[0] # 将dp的第一个元素设置为第一个房屋的金额
dp[1] = max(nums[0], nums[1]) # 将dp的第二个元素设置为第一二个房屋中的金额较大者
# 遍历剩余的房屋
for i in range(2, len(nums)):
# 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
return dp[-1] # 返回最后一个房屋中可抢劫的最大金额
2维DP
class Solution:
def rob(self, nums: List[int]) -> int:
if not nums: # 如果没有房屋,返回0
return 0
n = len(nums)
dp = [[0, 0] for _ in range(n)] # 创建二维动态规划数组,dp[i][0]表示不抢劫第i个房屋的最大金额,dp[i][1]表示抢劫第i个房屋的最大金额
dp[0][1] = nums[0] # 抢劫第一个房屋的最大金额为第一个房屋的金额
for i in range(1, n):
dp[i][0] = max(dp[i-1][0], dp[i-1][1]) # 不抢劫第i个房屋,最大金额为前一个房屋抢劫和不抢劫的最大值
dp[i][1] = dp[i-1][0] + nums[i] # 抢劫第i个房屋,最大金额为前一个房屋不抢劫的最大金额加上当前房屋的金额
return max(dp[n-1][0], dp[n-1][1]) # 返回最后一个房屋中可抢劫的最大金额
优化版
class Solution:
def rob(self, nums: List[int]) -> int:
if not nums: # 如果没有房屋,返回0
return 0
prev_max = 0 # 上一个房屋的最大金额
curr_max = 0 # 当前房屋的最大金额
for num in nums:
temp = curr_max # 临时变量保存当前房屋的最大金额
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
prev_max = temp # 更新上一个房屋的最大金额
return curr_max # 返回最后一个房屋中可抢劫的最大金额
213.打家劫舍II
听完卡哥的思路,先来一份自己写的吧!
class Solution:
def rob(self, nums: List[int]) -> int:
# 首先还是要判断len(nums) < 2的情况,小于2就没法进行切片操作了
if len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
# 为什么不判断len(nums) == 2?
# 因为此时是max(nums[0], nums[1]),但是在下面的逻辑里也走得通,这里多写一步属于是画蛇添足。
result = max(self.robRange(nums[:-1]), self.robRange(nums[1:]))
return result
# 完全照搬打家劫舍Ⅰ,一个字没改!
def robRange(self, nums):
# 这里依然要保留长度等于1的情况判断
# 长度等于0的情况判断是没有必要的,切片之后不会有这种情况。
# if len(nums) == 0:
# return 0
if len(nums) == 1:
return nums[0]
dp = [0] * len(nums)
dp[0] = nums[0]
dp[1] = max(nums[0], nums[1])
for i in range(2, len(nums)):
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
return dp[-1]
Python:
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
result1 = self.robRange(nums, 0, len(nums) - 2) # 情况二
result2 = self.robRange(nums, 1, len(nums) - 1) # 情况三
return max(result1, result2)
# 198.打家劫舍的逻辑
def robRange(self, nums: List[int], start: int, end: int) -> int:
if end == start:
return nums[start]
prev_max = nums[start]
curr_max = max(nums[start], nums[start + 1])
for i in range(start + 2, end + 1):
temp = curr_max
curr_max = max(prev_max + nums[i], curr_max)
prev_max = temp
return curr_max
2维DP
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) < 3:
return max(nums)
# 情况二:不抢劫第一个房屋
result1 = self.robRange(nums[:-1])
# 情况三:不抢劫最后一个房屋
result2 = self.robRange(nums[1:])
return max(result1, result2)
def robRange(self, nums):
dp = [[0, 0] for _ in range(len(nums))]
dp[0][1] = nums[0]
for i in range(1, len(nums)):
dp[i][0] = max(dp[i - 1])
dp[i][1] = dp[i - 1][0] + nums[i]
return max(dp[-1])
优化版
class Solution:
def rob(self, nums: List[int]) -> int:
if not nums: # 如果没有房屋,返回0
return 0
if len(nums) == 1: # 如果只有一个房屋,返回该房屋的金额
return nums[0]
# 情况二:不抢劫第一个房屋
prev_max = 0 # 上一个房屋的最大金额
curr_max = 0 # 当前房屋的最大金额
for num in nums[1:]:
temp = curr_max # 临时变量保存当前房屋的最大金额
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
prev_max = temp # 更新上一个房屋的最大金额
result1 = curr_max
# 情况三:不抢劫最后一个房屋
prev_max = 0 # 上一个房屋的最大金额
curr_max = 0 # 当前房屋的最大金额
for num in nums[:-1]:
temp = curr_max # 临时变量保存当前房屋的最大金额
curr_max = max(prev_max + num, curr_max) # 更新当前房屋的最大金额
prev_max = temp # 更新上一个房屋的最大金额
result2 = curr_max
return max(result1, result2)
337.打家劫舍 III
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
dp数组(dp table)以及下标的含义:下标为0,dp[0]
记录不偷该节点所得到的的最大金钱,下标为1,dp[1]
记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
Python
暴力递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: TreeNode) -> int:
if root is None:
return 0
if root.left is None and root.right is None:
return root.val
# 偷父节点
val1 = root.val
if root.left:
val1 += self.rob(root.left.left) + self.rob(root.left.right)
if root.right:
val1 += self.rob(root.right.left) + self.rob(root.right.right)
# 不偷父节点
val2 = self.rob(root.left) + self.rob(root.right)
return max(val1, val2)
记忆化递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
memory = {}
def rob(self, root: TreeNode) -> int:
if root is None:
return 0
if root.left is None and root.right is None:
return root.val
if self.memory.get(root) is not None:
return self.memory[root]
# 偷父节点
val1 = root.val
if root.left:
val1 += self.rob(root.left.left) + self.rob(root.left.right)
if root.right:
val1 += self.rob(root.right.left) + self.rob(root.right.right)
# 不偷父节点
val2 = self.rob(root.left) + self.rob(root.right)
self.memory[root] = max(val1, val2)
return max(val1, val2)
动态规划
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
# dp数组(dp table)以及下标的含义:
# 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
# 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
dp = self.traversal(root)
return max(dp) # 将根节点不偷和偷取大的那个值。
# 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
def traversal(self, node):
# 递归终止条件,就是遇到了空节点,那肯定是不偷的
if not node:
return (0, 0) # 偷和不偷,最大都是0
left = self.traversal(node.left)
right = self.traversal(node.right)
# 不偷当前节点, 偷子节点
val_0 = max(left[0], left[1]) + max(right[0], right[1])
# 偷当前节点, 不偷子节点
val_1 = node.val + left[0] + right[0]
return (val_0, val_1) # 得到的是不偷和偷的值
121.买卖股票的最佳时机
dp[i][0]
表示第i天持有股票所得最多现金 , dp[i][1]
表示第i天不持有股票所得最多现金.
有一个地方没搞懂,自己写的时候出错了。
dp[i][0] = max(dp[i-1][0], -prices[i])
# 这里的-prices[i]为什么不是dp[i-1][1] - prices[i]
懂了,买卖一次和买卖多次的区别
Python:
贪心法:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
low = float("inf")
result = 0
for i in range(len(prices)):
low = min(low, prices[i]) #取最左最小价格
result = max(result, prices[i] - low) #直接取最大区间利润
return result
动态规划:版本一
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
if len == 0:
return 0
dp = [[0] * 2 for _ in range(length)]
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i][0] = max(dp[i-1][0], -prices[i])
# 这里的-prices[i]为什么不是dp[i-1][1] - prices[i]
# 这个表示买卖多次,dp[i-1][1] 表示前一天不持有股票时手上的利润
dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])
return dp[-1][1]
动态规划:版本二
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i % 2][0] = max(dp[(i-1) % 2][0], -prices[i])
dp[i % 2][1] = max(dp[(i-1) % 2][1], prices[i] + dp[(i-1) % 2][0])
return dp[(length-1) % 2][1]
动态规划:版本三
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp0, dp1 = -prices[0], 0 #注意这里只维护两个常量,因为dp0的更新不受dp1的影响
for i in range(1, length):
dp1 = max(dp1, dp0 + prices[i])
dp0 = max(dp0, -prices[i])
return dp1
122.买卖股票的最佳时机II
Python:
贪心
前面讲过
版本一:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(length)]
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
return dp[-1][1]
版本二:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i % 2][0] = max(dp[(i-1) % 2][0], dp[(i-1) % 2][1] - prices[i])
dp[i % 2][1] = max(dp[(i-1) % 2][1], dp[(i-1) % 2][0] + prices[i])
return dp[(length-1) % 2][1]
123.买卖股票的最佳时机III
- 没有操作 (其实我们也可以不设置这个状态)
dp[i][0]
- 第一次持有股票
dp[i][1]
- 第一次不持有股票
dp[i][2]
- 第二次持有股票
dp[i][3]
- 第二次不持有股票
dp[i][4]
第二次卖出一定包含了第一次卖出的最大值:
如果第一次卖出是最大值,那么第二次买卖在同一天,第二次卖出的利润依然是第一次买卖的利润。
Python:
版本一:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if len(prices) == 0:
return 0
dp = [[0] * 5 for _ in range(len(prices))]
dp[0][1] = -prices[0]
dp[0][3] = -prices[0]
for i in range(1, len(prices)):
dp[i][0] = dp[i-1][0]
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
# dp[i-1][0] - prices[i] 写作 - prices[i]也是可以的
dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
return dp[-1][4]
版本二:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if len(prices) == 0:
return 0
dp = [0] * 5
dp[1] = -prices[0]
dp[3] = -prices[0]
for i in range(1, len(prices)):
dp[1] = max(dp[1], dp[0] - prices[i])
dp[2] = max(dp[2], dp[1] + prices[i])
dp[3] = max(dp[3], dp[2] - prices[i])
dp[4] = max(dp[4], dp[3] + prices[i])
return dp[4]
188.买卖股票的最佳时机IV
Python:
版本一
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if len(prices) == 0:
return 0
dp = [[0] * (2*k+1) for _ in range(len(prices))]
for j in range(1, 2*k, 2):
dp[0][j] = -prices[0]
for i in range(1, len(prices)):
for j in range(0, 2*k-1, 2):
dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
return dp[-1][2*k]
版本二
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if len(prices) == 0: return 0
dp = [0] * (2*k + 1)
for i in range(1,2*k,2):
dp[i] = -prices[0]
for i in range(1,len(prices)):
for j in range(1,2*k + 1):
if j % 2:
dp[j] = max(dp[j],dp[j-1]-prices[i])
else:
dp[j] = max(dp[j],dp[j-1]+prices[i])
return dp[2*k]
309.最佳买卖股票时机含冷冻期
dp[i][j]
,第i天状态为j,所剩的最多现金为dp[i][j]
具体可以区分出如下四个状态:
- 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
- 不持有股票状态,这里就有两种卖出股票状态
- 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
- 状态三:今天卖出股票
- 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
Python:
版本一
from typing import List
class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
if n == 0:
return 0
dp = [[0] * 4 for _ in range(n)] # 创建动态规划数组,4个状态分别表示持有股票、不持有股票且处于冷冻期、不持有股票且不处于冷冻期、不持有股票且当天卖出后处于冷冻期
dp[0][0] = -prices[0] # 初始状态:第一天持有股票的最大利润为买入股票的价格
for i in range(1, n):
dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i]) # 当前持有股票的最大利润等于前一天持有股票的最大利润或者前一天不持有股票且不处于冷冻期的最大利润减去当前股票的价格
dp[i][1] = max(dp[i-1][1], dp[i-1][3]) # 当前不持有股票且处于冷冻期的最大利润等于前一天持有股票的最大利润加上当前股票的价格
dp[i][2] = dp[i-1][0] + prices[i] # 当前不持有股票且不处于冷冻期的最大利润等于前一天不持有股票的最大利润或者前一天处于冷冻期的最大利润
dp[i][3] = dp[i-1][2] # 当前不持有股票且当天卖出后处于冷冻期的最大利润等于前一天不持有股票且不处于冷冻期的最大利润
return max(dp[n-1][3], dp[n-1][1], dp[n-1][2]) # 返回最后一天不持有股票的最大利润
版本二
class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
if n < 2:
return 0
# 定义三种状态的动态规划数组
dp = [[0] * 3 for _ in range(n)]
dp[0][0] = -prices[0] # 持有股票的最大利润
dp[0][1] = 0 # 不持有股票,且处于冷冻期的最大利润
dp[0][2] = 0 # 不持有股票,不处于冷冻期的最大利润
for i in range(1, n):
# 当前持有股票的最大利润等于前一天持有股票的最大利润或者前一天不持有股票且不处于冷冻期的最大利润减去当前股票的价格
dp[i][0] = max(dp[i-1][0], dp[i-1][2] - prices[i])
# 当前不持有股票且处于冷冻期的最大利润等于前一天持有股票的最大利润加上当前股票的价格
dp[i][1] = dp[i-1][0] + prices[i]
# 当前不持有股票且不处于冷冻期的最大利润等于前一天不持有股票的最大利润或者前一天处于冷冻期的最大利润
dp[i][2] = max(dp[i-1][2], dp[i-1][1])
# 返回最后一天不持有股票的最大利润
return max(dp[-1][1], dp[-1][2])
714.买卖股票的最佳时机含手续费
python
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
n = len(prices)
dp = [[0] * 2 for _ in range(n)]
dp[0][0] = -prices[0] #持股票
for i in range(1, n):
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
return max(dp[-1][0], dp[-1][1])
300.最长递增子序列
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
注意:result不是dp[-1]
,以numbers[-1]为结尾的不一定是最长递增子序列。
Python:
DP
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) <= 1:
return len(nums)
dp = [1] * len(nums)
result = 1
for i in range(1, len(nums)):
for j in range(0, i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
result = max(result, dp[i]) #取长的子序列
return result
贪心
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) <= 1:
return len(nums)
tails = [nums[0]] # 存储递增子序列的尾部元素
for num in nums[1:]:
if num > tails[-1]:
tails.append(num) # 如果当前元素大于递增子序列的最后一个元素,直接加入到子序列末尾
else:
# 使用二分查找找到当前元素在递增子序列中的位置,并替换对应位置的元素
left, right = 0, len(tails) - 1
while left < right:
mid = (left + right) // 2
if tails[mid] < num:
left = mid + 1
else:
right = mid
tails[left] = num
return len(tails) # 返回递增子序列的长度
674. 最长连续递增序列
Python:
DP
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
result = 1
dp = [1] * len(nums)
for i in range(len(nums)-1):
if nums[i+1] > nums[i]: #连续记录
dp[i+1] = dp[i] + 1
result = max(result, dp[i+1])
return result
DP(优化版)
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
if not nums:
return 0
max_length = 1
current_length = 1
for i in range(1, len(nums)):
if nums[i] > nums[i - 1]:
current_length += 1
max_length = max(max_length, current_length)
else:
current_length = 1
return max_length
贪心
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
result = 1 #连续子序列最少也是1
count = 1
for i in range(len(nums)-1):
if nums[i+1] > nums[i]: #连续记录
count += 1
else: #不连续,count从头开始
count = 1
result = max(result, count)
return result
718. 最长重复子数组
dp[i][j]
:以下标i - 1
为结尾的A,和以下标j - 1
为结尾的B,最长重复子数组长度为dp[i][j]
。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
为什么不是以i
,j
为结尾?[直接看卡哥视频讲解!](【动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组】 https://www.bilibili.com/video/BV178411H7hV/?p=125&share_source=copy_web&vd_source=ab633b305326f194e9dfa234af9fe2d8)
Python:
2维DP
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
# 创建一个二维数组 dp,用于存储最长公共子数组的长度
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
# 记录最长公共子数组的长度
result = 0
# 遍历数组 nums1
for i in range(1, len(nums1) + 1):
# 为什么是len+1? 因为定义的是以i-1为结尾的。d[m][n]只能是到nums1[m-1]和nums2[n-1]
# 遍历数组 nums2
for j in range(1, len(nums2) + 1):
# 如果 nums1[i-1] 和 nums2[j-1] 相等
if nums1[i - 1] == nums2[j - 1]:
# if nums1[i] == nums2[j]是错的
# 在当前位置上的最长公共子数组长度为前一个位置上的长度加一
dp[i][j] = dp[i - 1][j - 1] + 1
# 更新最长公共子数组的长度
if dp[i][j] > result:
result = dp[i][j]
# 返回最长公共子数组的长度
return result
1维DP
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
# 创建一个一维数组 dp,用于存储最长公共子数组的长度
dp = [0] * (len(nums2) + 1)
# 记录最长公共子数组的长度
result = 0
# 遍历数组 nums1
for i in range(1, len(nums1) + 1):
# 用于保存上一个位置的值
prev = 0
# 遍历数组 nums2
for j in range(1, len(nums2) + 1):
# 保存当前位置的值,因为会在后面被更新
current = dp[j]
# 如果 nums1[i-1] 和 nums2[j-1] 相等
if nums1[i - 1] == nums2[j - 1]:
# 在当前位置上的最长公共子数组长度为上一个位置的长度加一
dp[j] = prev + 1
# 更新最长公共子数组的长度
if dp[j] > result:
result = dp[j]
else:
# 如果不相等,将当前位置的值置为零
dp[j] = 0
# 更新 prev 变量为当前位置的值,供下一次迭代使用
prev = current
# 返回最长公共子数组的长度
return result
2维DP 扩展
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
# 创建一个二维数组 dp,用于存储最长公共子数组的长度
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
# 记录最长公共子数组的长度
result = 0
# 对第一行和第一列进行初始化
for i in range(len(nums1)):
if nums1[i] == nums2[0]:
dp[i + 1][1] = 1
for j in range(len(nums2)):
if nums1[0] == nums2[j]:
dp[1][j + 1] = 1
# 填充dp数组
for i in range(1, len(nums1) + 1):
for j in range(1, len(nums2) + 1):
if nums1[i - 1] == nums2[j - 1]:
# 如果 nums1[i-1] 和 nums2[j-1] 相等,则当前位置的最长公共子数组长度为左上角位置的值加一
dp[i][j] = dp[i - 1][j - 1] + 1
if dp[i][j] > result:
# 更新最长公共子数组的长度
result = dp[i][j]
# 返回最长公共子数组的长度
return result
1143.最长公共子序列
dp[i][j]
:长度为[0, i - 1]
的字符串text1
与长度为[0, j - 1]
的字符串text2
的最长公共子序列为dp[i][j]
有同学会问:为什么要定义长度为[0, i - 1]
的字符串text1
,定义为长度为[0, i]
字符串text1
不香么?
这样定义是为了后面代码实现方便.
Python:
2维DP
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
# 创建一个二维数组 dp,用于存储最长公共子序列的长度
dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
# 遍历 text1 和 text2,填充 dp 数组
for i in range(1, len(text1) + 1):
for j in range(1, len(text2) + 1):
if text1[i - 1] == text2[j - 1]:
# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
dp[i][j] = dp[i - 1][j - 1] + 1
else:
# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 返回最长公共子序列的长度
return dp[len(text1)][len(text2)]
# 这里跟前面几题不一样,好好体会。
1维DP
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
dp = [0] * (n + 1) # 初始化一维DP数组
for i in range(1, m + 1):
prev = 0 # 保存上一个位置的最长公共子序列长度
for j in range(1, n + 1):
curr = dp[j] # 保存当前位置的最长公共子序列长度
if text1[i - 1] == text2[j - 1]:
# 如果当前字符相等,则最长公共子序列长度加一
dp[j] = prev + 1
else:
# 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
dp[j] = max(dp[j], dp[j - 1])
prev = curr # 更新上一个位置的最长公共子序列长度
return dp[n] # 返回最后一个位置的最长公共子序列长度作为结果
1035.不相交的线
本质就是最长公共子序列。
Python:
class Solution:
def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
for i in range(1, len(A)+1):
for j in range(1, len(B)+1):
if A[i-1] == B[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[-1][-1]
53. 最大子序和
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
Python:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
# 非0下标初始成什么值都会被覆盖掉
dp[0] = nums[0]
result = dp[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1] + nums[i], nums[i]) #状态转移公式
result = max(result, dp[i]) #result 保存dp[i]的最大值
return result
# 与上一题又不一样了
392.判断子序列
类似于最长公共子序列
dp[i][j]
表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]
。
Python:
class Solution:
def isSubsequence(self, s: str, t: str) -> bool:
dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
for i in range(1, len(s)+1):
for j in range(1, len(t)+1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = dp[i][j-1]
if dp[-1][-1] == len(s):
return True
return False
115.不同的子序列
不要求连续。
dp[i][j]
:以i-1
为结尾的s子序列中出现以j-1
为结尾的t的个数为dp[i][j]
。
这个题没听懂!
初始化自己做做错了。
Python:
class Solution:
def numDistinct(self, s: str, t: str) -> int:
dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
for i in range(len(s)):
dp[i][0] = 1
for j in range(1, len(t)):
dp[0][j] = 0
for i in range(1, len(s)+1):
for j in range(1, len(t)+1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
else:
dp[i][j] = dp[i-1][j]
return dp[-1][-1]
583. 两个字符串的删除操作
dp[i][j]
:以i-1
为结尾的字符串word1
,和以j-1
位结尾的字符串word2
,想要达到相等,所需要删除元素的最少次数。
Python:
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
for i in range(len(word1)+1):
dp[i][0] = i
for j in range(len(word2)+1):
dp[0][j] = j
for i in range(1, len(word1)+1):
for j in range(1, len(word2)+1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
return dp[-1][-1]
72. 编辑距离
dp[i][j]
表示以下标i-1为结尾的字符串word1
,和以下标j-1为结尾的字符串word2
,最近编辑距离为dp[i][j]
。
Python:
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
for i in range(len(word1)+1):
dp[i][0] = i
for j in range(len(word2)+1):
dp[0][j] = j
for i in range(1, len(word1)+1):
for j in range(1, len(word2)+1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
return dp[-1][-1]
647. 回文子串
布尔类型的dp[i][j]
:表示区间范围[i,j]
(注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]
为true,否则为false。
Python:
动态规划:
class Solution:
def countSubstrings(self, s: str) -> int:
dp = [[False] * len(s) for _ in range(len(s))]
# 二维数组
result = 0
for i in range(len(s)-1, -1, -1): #注意遍历顺序
for j in range(i, len(s)): # 注意范围
if s[i] == s[j]:
if j - i <= 1: #情况一 和 情况二
result += 1
dp[i][j] = True
elif dp[i+1][j-1]: #情况三
result += 1
dp[i][j] = True
return result
动态规划:简洁版
class Solution:
def countSubstrings(self, s: str) -> int:
dp = [[False] * len(s) for _ in range(len(s))]
result = 0
for i in range(len(s)-1, -1, -1): #注意遍历顺序
for j in range(i, len(s)):
if s[i] == s[j] and (j - i <= 1 or dp[i+1][j-1]):
result += 1
dp[i][j] = True
return result
双指针法:
class Solution:
def countSubstrings(self, s: str) -> int:
result = 0
for i in range(len(s)):
result += self.extend(s, i, i, len(s)) #以i为中心
result += self.extend(s, i, i+1, len(s)) #以i和i+1为中心
return result
def extend(self, s, i, j, n):
res = 0
while i >= 0 and j < n and s[i] == s[j]:
i -= 1
j += 1
res += 1
return res
516.最长回文子序列
dp[i][j]
:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]
。
Python:
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
dp = [[0] * len(s) for _ in range(len(s))]
for i in range(len(s)):
dp[i][i] = 1
for i in range(len(s)-1, -1, -1):
for j in range(i+1, len(s)):
if s[i] == s[j]:
dp[i][j] = dp[i+1][j-1] + 2
else:
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
return dp[0][-1]