#AI夏令营 #Datawhale #夏令营
实践步骤:跑通baseline → 尝试个人idea→尝试进阶baseline
一、跑通baseline
跑通用时18分钟,评分18.2727
Step2:配置导入
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json
#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'
Step3:模型测试
def get_completions(text):
messages = [ChatMessage(
role="user",
content=text
)]
spark = ChatSparkLLM(
spark_api_url=SPARKAI_URL,
spark_app_id=SPARKAI_APP_ID,
spark_api_key=SPARKAI_API_KEY,
spark_api_secret=SPARKAI_API_SECRET,
spark_llm_domain=SPARKAI_DOMAIN,
streaming=False,
)
handler = ChunkPrintHandler()
a = spark.generate([messages], callbacks=[handler])
return a.generations[0][0].text
# 测试模型配置是否正确
text = "你好"
get_completions(text)
这段代码展示了一个通过 ChatSparkLLM
调用大语言模型(LLM)生成文本补全的示例。以下是逐步详细解释:
导入和初始化
假设已经导入了必要的模块和类,例如 ChatMessage
、ChatSparkLLM
和 ChunkPrintHandler
。
函数定义
def get_completions(text):
定义一个名为 get_completions
的函数,接受一个字符串参数 text
。
创建消息
messages = [ChatMessage(
role="user",
content=text
)]
ChatMessage
:创建一个ChatMessage
对象。role="user"
:指定消息的角色为用户。
-content=text
:消息内容为传入的 text。
-messages
:将这个消息对象放入一个列表中,传递给模型用于生成回复。
初始化模型
spark = ChatSparkLLM(
spark_api_url=SPARKAI_URL,
spark_app_id=SPARKAI_APP_ID,
spark_api_key=SPARKAI_API_KEY,
spark_api_secret=SPARKAI_API_SECRET,
spark_llm_domain=SPARKAI_DOMAIN,
streaming=False,
)
```
- ChatSparkLLM:初始化一个 ChatSparkLLM 对象。
- spark_api_url、spark_app_id、spark_api_key、spark_api_secret、spark_llm_domain:这些都是用于访问 SparkAI API 的配置信息。
- streaming=False:关闭流式输出。
### 回调处理器
```python
handler = ChunkPrintHandler()
ChunkPrintHandler
:初始化一个ChunkPrintHandler
对象,用于处理生成的文本块(chunk
)。
生成回复
a = spark.generate([messages], callbacks=[handler])
spark.generate
:调用generate
方法生成回复。[messages]
:将消息列表作为参数传入。callbacks=[handler]
:使用ChunkPrintHandler
作为回调处理器,处理生成的文本块。
返回结果
return a.generations[0][0].text
a.generations
:获取生成的文本结果。[0][0]
:访问第一条生成的回复。.text
:获取文本内容。
测试函数
# 测试模型配置是否正确
text = "你好"
get_completions(text)
- 设置测试文本
text
为 “你好”。 - 调用
get_completions(text)
函数,测试模型是否正确配置,并生成相应的回复。
总结
这段代码展示了如何使用 ChatSparkLLM
通过 SparkAI API 调用大语言模型生成文本补全的过程。包括初始化消息、配置模型参数、设置回调处理器和获取生成的文本。通过这种方式,你可以与大语言模型进行互动,生成基于输入文本的回复。
Step4:数据读取
def read_json(json_file_path):
"""读取json文件"""
with open(json_file_path, 'r') as f:
data = json.load(f)
return data
def write_json(json_file_path, data):
"""写入json文件"""
with open(json_file_path, 'w') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")
这段代码包含两个函数,用于读取和写入 JSON 文件,并展示了如何读取训练和测试数据。下面是详细解释每个部分:
1. read_json 函数
def read_json(json_file_path):
"""读取json文件"""
with open(json_file_path, 'r') as f:
data = json.load(f)
return data
功能
- 目的:读取指定路径的 JSON 文件并返回其内容。
- 参数:
json_file_path
:JSON 文件的路径。
详细解释
with open(json_file_path, 'r') as f
:- 打开指定路径的 JSON 文件,读取模式为 ‘r’(读取)。
with
语句用于确保文件在使用完毕后被正确关闭。
data = json.load(f)
:- 使用 json 模块的 load 方法将打开的文件对象 f 中的 JSON 数据读取并解析为 Python 对象(通常是字典或列表)。
return data
:- 返回读取并解析后的数据。
2. write_json 函数
def write_json(json_file_path, data):
"""写入json文件"""
with open(json_file_path, 'w') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
功能
- 目的:将数据写入指定路径的 JSON 文件。
- 参数:
json_file_path
:JSON 文件的路径。data
:要写入 JSON 文件的数据(通常是字典或列表)。
详细解释
with open(json_file_path, 'w') as f
:- 打开指定路径的 JSON 文件,写入模式为 ‘w’(写入)。如果文件不存在,会创建一个新文件。
- with 语句用于确保文件在使用完毕后被正确关闭。
json.dump(data, f, ensure_ascii=False, indent=4)
:- 使用 json 模块的
dump
方法将 data 写入文件对象 f。 ensure_ascii=False
:确保非 ASCII 字符(如中文)被正确写入,而不转义。indent=4
:设置缩进级别为4,使生成的 JSON 文件更易读。
- 使用 json 模块的
3. 读取数据
# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")
功能
- 目的:读取训练数据和测试数据。
- 详细解释:
- 调用
read_json
函数,传入"dataset/train.json"
路径,读取并返回训练数据,赋值给train_data
。 - 调用
read_json
函数,传入"dataset/test_data.json"
路径,读取并返回测试数据,赋值给test_data
。
- 调用
总结
这段代码通过定义 read_json
和 write_json
两个函数,实现了对 JSON 文件的读取和写入操作。随后,通过调用 read_json
函数读取训练和测试数据,分别存储在 train_data
和 test_data
变量中。这样可以方便地处理和管理数据集。
Step5:Prompt设计
# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。
表单格式如下:
info: Array<Dict(
"基本信息-姓名": string | "", // 客户的姓名。
"基本信息-手机号码": string | "", // 客户的手机号码。
"基本信息-邮箱": string | "", // 客户的电子邮箱地址。
"基本信息-地区": string | "", // 客户所在的地区或城市。
"基本信息-详细地址": string | "", // 客户的详细地址。
"基本信息-性别": string | "", // 客户的性别。
"基本信息-年龄": string | "", // 客户的年龄。
"基本信息-生日": string | "", // 客户的生日。
"咨询类型": string[] | [], // 客户的咨询类型,如询价、答疑等。
"意向产品": string[] | [], // 客户感兴趣的产品。
"购买异议点": string[] | [], // 客户在购买过程中提出的异议或问题。
"客户预算-预算是否充足": string | "", // 客户的预算是否充足。示例:充足, 不充足
"客户预算-总体预算金额": string | "", // 客户的总体预算金额。
"客户预算-预算明细": string | "", // 客户预算的具体明细。
"竞品信息": string | "", // 竞争对手的信息。
"客户是否有意向": string | "", // 客户是否有购买意向。示例:有意向, 无意向
"客户是否有卡点": string | "", // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点
"客户购买阶段": string | "", // 客户当前的购买阶段,如合同中、方案交流等。
"下一步跟进计划-参与人": string[] | [], // 下一步跟进计划中涉及的人员(客服人员)。
"下一步跟进计划-时间点": string | "", // 下一步跟进的时间点。
"下一步跟进计划-具体事项": string | "" // 下一步需要进行的具体事项。
)>
请分析以下群聊对话记录,并根据上述格式提取信息:
**对话记录:**
{content}
请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。
**输出:**
[{{
"基本信息-姓名": "姓名",
"基本信息-手机号码": "手机号码",
"基本信息-邮箱": "邮箱",
"基本信息-地区": "地区",
"基本信息-详细地址": "详细地址",
"基本信息-性别": "性别",
"基本信息-年龄": "年龄",
"基本信息-生日": "生日",
"咨询类型": ["咨询类型"],
"意向产品": ["意向产品"],
"购买异议点": ["购买异议点"],
"客户预算-预算是否充足": "充足或不充足",
"客户预算-总体预算金额": "总体预算金额",
"客户预算-预算明细": "预算明细",
"竞品信息": "竞品信息",
"客户是否有意向": "有意向或无意向",
"客户是否有卡点": "有卡点或无卡点",
"客户购买阶段": "购买阶段",
"下一步跟进计划-参与人": ["跟进计划参与人"],
"下一步跟进计划-时间点": "跟进计划时间点",
"下一步跟进计划-具体事项": "跟进计划具体事项"
}}, ...]
"""
这个 PROMPT_EXTRACT
设计旨在从对话记录中提取结构化信息,以便进一步处理或分析。以下是对每个部分的详细解释:
模板设计
表单格式
info: Array<Dict(
"基本信息-姓名": string | "", // 客户的姓名。
"基本信息-手机号码": string | "", // 客户的手机号码。
"基本信息-邮箱": string | "", // 客户的电子邮箱地址。
"基本信息-地区": string | "", // 客户所在的地区或城市。
"基本信息-详细地址": string | "", // 客户的详细地址。
"基本信息-性别": string | "", // 客户的性别。
"基本信息-年龄": string | "", // 客户的年龄。
"基本信息-生日": string | "", // 客户的生日。
"咨询类型": string[] | [], // 客户的咨询类型,如询价、答疑等。
"意向产品": string[] | [], // 客户感兴趣的产品。
"购买异议点": string[] | [], // 客户在购买过程中提出的异议或问题。
"客户预算-预算是否充足": string | "", // 客户的预算是否充足。示例:充足, 不充足
"客户预算-总体预算金额": string | "", // 客户的总体预算金额。
"客户预算-预算明细": string | "", // 客户预算的具体明细。
"竞品信息": string | "", // 竞争对手的信息。
"客户是否有意向": string | "", // 客户是否有购买意向。示例:有意向, 无意向
"客户是否有卡点": string | "", // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点
"客户购买阶段": string | "", // 客户当前的购买阶段,如合同中、方案交流等。
"下一步跟进计划-参与人": string[] | [], // 下一步跟进计划中涉及的人员(客服人员)。
"下一步跟进计划-时间点": string | "", // 下一步跟进的时间点。
"下一步跟进计划-具体事项": string | "" // 下一步需要进行的具体事项。
)>
对话记录解析
对话记录通常包含多位参与者的交谈。我们需要从中提取出有关客户的详细信息。这些信息可以是显式提供的,如客户直接提供的姓名、电话等,也可以是隐式提到的,如通过对话推断出的意向产品、预算信息等。
示例解析
假设我们有以下对话记录:
客户A:你好,我想了解一下你们的产品。
客服B:您好,请问您贵姓?
客户A:我姓张,张三。
客服B:好的,张先生,请问您的联系电话是?
客户A:我的手机号是12345678901。
客服B:感谢,请问您的邮箱地址?
客户A:zhangsan@example.com。
客服B:好的,请问您主要关注的是哪些产品呢?
客户A:我对你们的智能手机和笔记本比较感兴趣。
客服B:请问您对产品的预算是多少?
客户A:我预计在5000-8000元之间。
输出格式
我们需要提取并结构化这些信息,如下所示:
[
{
"基本信息-姓名": "张三",
"基本信息-手机号码": "12345678901",
"基本信息-邮箱": "zhangsan@example.com",
"基本信息-地区": "",
"基本信息-详细地址": "",
"基本信息-性别": "男",
"基本信息-年龄": "",
"基本信息-生日": "",
"咨询类型": ["询价"],
"意向产品": ["智能手机", "笔记本"],
"购买异议点": [],
"客户预算-预算是否充足": "充足",
"客户预算-总体预算金额": "5000-8000元",
"客户预算-预算明细": "",
"竞品信息": "",
"客户是否有意向": "有意向",
"客户是否有卡点": "无卡点",
"客户购买阶段": "咨询中",
"下一步跟进计划-参与人": ["客服B"],
"下一步跟进计划-时间点": "",
"下一步跟进计划-具体事项": "进一步了解客户需求并提供产品详情"
}
]
PROMPT_EXTRACT
的作用
- 输入格式化:提供统一的输入格式,确保模型知道如何解析输入的对话记录。
- 信息提取:指示模型从对话记录中提取特定的信息,并以预定义的格式返回。
- 输出验证:确保生成的输出遵循预定义的 JSON 格式,不包含多余的信息或字段。
通过这种设计,模型可以高效地从群聊对话中提取结构化的信息,方便后续的数据分析和处理。
Step6:主函数启动
import json
class JsonFormatError(Exception):
"""
JsonFormatError:定义一个自定义异常类,用于在 JSON 格式不符合预期时抛出异常
"""
def __init__(self, message):
self.message = message
super().__init__(self.message)
def convert_all_json_in_text_to_dict(text):
"""提取LLM输出文本中的json字符串
convert_all_json_in_text_to_dict:遍历输入文本,提取 JSON 格式的子字符串并转换为 Python 字典。
使用栈(stack)来追踪 JSON 字符串的起始和结束位置,从而准确提取完整的 JSON 对象。"""
dicts, stack = [], []
for i in range(len(text)):
if text[i] == '{':
stack.append(i)
elif text[i] == '}':
begin = stack.pop()
if not stack:
dicts.append(json.loads(text[begin:i+1]))
return dicts
# 查看对话标签
def print_json_format(data):
"""格式化输出json格式
print_json_format:将输入的 Python 对象格式化为 JSON 字符串并打印,便于阅读。"""
print(json.dumps(data, indent=4, ensure_ascii=False))
def check_and_complete_json_format(data):
"""
check_and_complete_json_format:检查 JSON 数据是否符合预期的格式,
缺失的键用默认值补全,不符合类型的键抛出异常。
使用 required_keys 字典定义所需的键及其预期类型。
"""
"""
required_keys 字典:定义一个字典,包含所有预期的键及其对应的值类型。
例如,"基本信息-姓名" 的值应该是字符串 (str),而 "咨询类型" 的值应该是列表 (list)。
"""
required_keys = {
"基本信息-姓名": str,
"基本信息-手机号码": str,
"基本信息-邮箱": str,
"基本信息-地区": str,
"基本信息-详细地址": str,
"基本信息-性别": str,
"基本信息-年龄": str,
"基本信息-生日": str,
"咨询类型": list,
"意向产品": list,
"购买异议点": list,
"客户预算-预算是否充足": str,
"客户预算-总体预算金额": str,
"客户预算-预算明细": str,
"竞品信息": str,
"客户是否有意向": str,
"客户是否有卡点": str,
"客户购买阶段": str,
"下一步跟进计划-参与人": list,
"下一步跟进计划-时间点": str,
"下一步跟进计划-具体事项": str
}
if not isinstance(data, list):
"""
数据类型检查:检查输入的 data 是否为列表 (list) 类型。
如果不是,抛出 JsonFormatError 异常,提示 "Data is not a list"。
"""
raise JsonFormatError("Data is not a list")
for item in data:
if not isinstance(item, dict):
raise JsonFormatError("Item is not a dictionary")
"""
遍历 data 列表:逐个检查列表中的每个 item。
类型检查:检查每个 item 是否为字典 (dict) 类型。
如果不是,抛出 JsonFormatError 异常,提示 "Item is not a dictionary"。
"""
for key, value_type in required_keys.items():
"""
遍历 required_keys 字典:逐个检查每个预期的键。
键存在性检查和补全:如果 item 中缺少某个键,则根据该键的预期类型补全其默认值:
如果类型是 list,则补全为空列表 ([])。
否则,补全为空字符串 ("")。
类型检查:检查 item 中的每个键值是否符合预期的类型。
如果不符合,抛出 JsonFormatError 异常,提示具体的键和类型。
列表内部元素类型检查:如果键的值类型是 list,
进一步检查列表中的所有元素是否都是字符串 (str) 类型。
如果不是,抛出 JsonFormatError 异常,提示该键不包含全部字符串。
"""
if key not in item:
item[key] = [] if value_type == list else ""
if not isinstance(item[key], value_type):
raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")
if value_type == list and not all(isinstance(i, str) for i in item[key]):
raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")
return data # 返回经过检查和补全的 data 列表。
from tqdm import tqdm
retry_count = 5 # 设置重试次数以应对可能的错误。
result = []
error_data = []
# result 和 error_data:分别用于存储成功和失败的数据。
for index, data in tqdm(enumerate(test_data)):
"""
在遍历 test_data 时:
调用 get_completions 获取模型输出。
提取 JSON 数据并检查格式。
处理过程中如果发生错误,记录并继续处理其他数据。
"""
index += 1
# index:由于 enumerate 从 0 开始,给索引加1以使其从 1 开始,更符合常规习惯。
is_success = False
# is_success:标记处理是否成功,初始设为 False。
for i in range(retry_count):
# 重试循环:尝试最多 retry_count 次,以应对可能的错误。
"""
try 块:尝试执行以下操作:
调用 get_completions 函数,使用 PROMPT_EXTRACT 模板生成 data["chat_text"] 的补全结果。
调用 convert_all_json_in_text_to_dict 函数,将生成的文本结果转换为 JSON 格式的 Python 字典。
调用 check_and_complete_json_format 函数,检查并补全 JSON 格式,确保其符合预期。
将处理成功的结果追加到 result 列表中,并记录当前的 index。
设置 is_success 为 True,并跳出重试循环。
except 块:如果发生任何异常,捕获并打印错误信息,继续重试。
"""
try:
res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))
infos = convert_all_json_in_text_to_dict(res)
infos = check_and_complete_json_format(infos)
result.append({
"infos": infos,
"index": index
})
is_success = True
break
except Exception as e:
print("index:", index, ", error:", e)
continue
if not is_success:
"""
is_success 检查:如果在所有重试次数内仍然未能成功处理当前数据项,将其标记为失败。
记录失败数据:在 data 中添加 index 键,并将其追加到 error_data 列表中。
"""
data["index"] = index
error_data.append(data)
# 故障数据处理
"""这段代码展示了如何处理在初次尝试时未能成功处理的数据"""
if error_data:
"""如果有未成功处理的数据,进行多次重试,直至所有数据处理完成
检查 error_data 是否为空:只有在初次处理过程中存在未成功的数据时才执行重试逻辑。
设置 retry_count:将重试次数设为 10 次。
初始化 error_data_temp:用于暂存每轮重试后仍未成功的数据。
"""
retry_count = 10 # 重试次数
error_data_temp = []
while True:
"""
无限循环 while True:直到 error_data_temp 为空时才跳出循环。
重试数据交换:如果 error_data_temp 中有数据,则将其赋值给 error_data,并清空 error_data_temp。
"""
if error_data_temp:
error_data = error_data_temp
error_data_temp = []
for data in tqdm(error_data):
"""
遍历 error_data:使用 tqdm 显示进度条,逐个处理未成功的数据。
初始化 is_success:标记每个数据项的处理状态。
重试处理逻辑:
调用 get_completions:使用 PROMPT_EXTRACT 模板和数据项的 chat_text 调用大语言模型。
转换和检查 JSON 数据:将模型输出转换为 JSON 格式,并检查其格式。
追加成功处理的数据:如果处理成功,将结果追加到 result 列表,并设置 is_success 为 True,
然后跳出重试循环。
捕获异常:如果发生异常,打印错误信息,继续重试。
记录未成功的数据:如果在重试次数内未能成功处理,将数据项追加到 error_data_temp。
"""
is_success = False
for i in range(retry_count):
try:
res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))
infos = convert_all_json_in_text_to_dict(res)
infos = check_and_complete_json_format(infos)
result.append({
"infos": infos,
"index": data["index"]
})
is_success = True
break
except Exception as e:
print("index:", index, ", error:", e)
continue
if not is_success:
error_data_temp.append(data)
if not error_data_temp:
"""
检查 error_data_temp:如果 error_data_temp 为空,说明所有数据项均已成功处理,跳出无限循环。
排序结果:按 index 对 result 列表进行排序,确保结果按原始数据顺序排列。
"""
break
result = sorted(result, key=lambda x: x["index"])
Step7:生成提交文件
# 保存输出
write_json("output.json", result)
二、构思idea,改进baseline
【构思】在构思笔记层中写下即时想法或大纲,保留自己的idea尝试过程。
三、封存思想精华,个人感悟,学习记录都ok
【整理】
这个夏令营不简单 #AI夏令营 #Datawhale #夏令营