keras9composer
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
37、程序合成与开源仓库动态漏洞优先级排序技术研究
本文探讨了程序合成和开源仓库动态漏洞优先级排序的研究进展与挑战。在程序合成方面,分析了蒙特卡罗树搜索(MCTS)的UCT变体在生成满足特定需求程序中的应用,讨论了其在不同基准测试中的表现及面临的问题,如类型系统处理和早期次优承诺。在漏洞优先级排序方面,提出了一种基于进化动态优化技术的模型,将漏洞的投票数、优先级和严重程度纳入动态优化框架,并通过实验验证了GA-GProp方法在动态环境下优于静态方法和GA-HyperMut方法。未来研究方向包括类型系统优化、动态模型改进以及进化算法的进一步探索。原创 2025-08-21 09:19:21 · 42 阅读 · 0 评论 -
36、软件重构与程序合成的多目标优化方法
本文探讨了软件重构和程序合成领域的两种重要方法:基于主成分分析和非支配遗传算法(PCA-NSGA-II)的多目标优化方法,以及蒙特卡罗树搜索(MCTS)在程序合成中的应用。软件重构部分介绍了PCA-NSGA-II方法的原理及其在多目标优化问题中的优势,程序合成部分则对比了MCTS与传统遗传编程的优劣,并讨论了其在Java字节码合成中的具体实现和挑战。文章还提出了未来的研究方向和评估计划,旨在为相关领域的研究和实践提供参考。原创 2025-08-20 15:44:54 · 42 阅读 · 0 评论 -
35、软件项目中的资源分配与重构优化策略
本文探讨了软件工程中的两个关键问题:敏捷项目中的人力资源分配与多目标软件重构的性能优化。在人力资源分配方面,提出了一种基于Scrum的多目标方法,通过定义效率因子和相似性因子,最小化项目的时间和成本,并在真实世界实例中验证了NSGA-II算法的优越性。在软件重构方面,引入了PCA-NSGA-II方法,利用主成分分析降低目标维度,从而减少计算复杂度并提升决策效率。两种方法为软件项目管理和质量优化提供了有效的支持。原创 2025-08-19 13:18:47 · 47 阅读 · 0 评论 -
34、软件算法与代码异味检测技术研究
本文探讨了软件产品线(SPL)配置算法与交互式代码异味检测技术的研究进展。重点分析了eSATIBEA算法相较于SATIBEA在SPL多目标配置中的改进与优势,并详细介绍了基于开发者反馈的交互式代码异味检测方法,展示了其在多个开源项目中的检测效果。研究结果表明,eSATIBEA算法在收敛速度和超体积指标上表现更优,而交互式代码异味检测方法在精度和召回率方面具有显著优势。文章对未来的研究方向进行了展望,包括种子适应性优化、更大系统的验证以及自动化异味管理的实现。原创 2025-08-18 13:54:04 · 45 阅读 · 0 评论 -
33、软件测试与产品线配置优化技术解析
本文探讨了两种软件开发中的关键技术:方法依赖关系引导的遗传算法(GAMDR)在软件测试中的应用,以及多目标特征选择在演化软件产品线配置中的应用。通过实验分析,GAMDR在提高复杂类测试的分支覆盖率方面表现优异,而eSATIBEA在处理频繁演化的软件产品线配置问题时显著提升了效率和质量。原创 2025-08-17 09:00:51 · 36 阅读 · 0 评论 -
32、AVMf与GAMDR:软件测试中的高效工具与方法
本文介绍了两种在软件测试领域具有重要意义的工具和方法:AVMf框架和GAMDR算法。AVMf是一个用于搜索式软件工程(SBSE)项目的开源框架,实现了AVM算法及其增强版本,具有清晰的算法实现、灵活性和良好的可扩展性。GAMDR是一种基于遗传算法的测试数据生成方法,利用方法依赖关系(MDR)缩小搜索空间,并通过定向变异操作提高面向对象程序的分支覆盖率。文章详细阐述了两种工具的核心机制、优势、应用场景及操作步骤,并对它们进行了对比分析,最后展望了其未来发展方向。原创 2025-08-16 13:45:36 · 47 阅读 · 0 评论 -
31、代码克隆评估中的配置搜索与交替变量方法框架研究
本文探讨了代码克隆评估中的配置搜索与交替变量方法框架的研究。重点分析了代码克隆检测工具参数优化的策略,使用遗传算法提升工具一致性,并介绍了优化框架EvaClone的实现过程和实验结果。同时,介绍了交替变量方法(AVM)及其框架AVMf的发展和应用,包括测试数据生成和软件产品线决策排序等实际案例。文章还讨论了当前适应度函数的局限性以及未来研究方向,旨在提升软件工程效率与代码质量。原创 2025-08-15 12:16:54 · 31 阅读 · 0 评论 -
30、软件测试优化与克隆检测研究
本文探讨了软件开发中的测试优化与代码克隆检测技术。首先,介绍了深度参数优化在Viola-Jones人脸检测算法中的应用,展示了其在执行效率和分类误差方面的改进。其次,研究了基于多目标优化的Mockito测试套件最小化方法,通过NSGA-II算法显著减少了测试时间并保持较高的代码覆盖率。最后,分析了克隆检测中配置搜索的复制研究,评估了EvaClone框架在克隆一致性与质量方面的表现。这些研究为提升软件测试效率和代码质量提供了有价值的参考。原创 2025-08-14 16:32:22 · 46 阅读 · 0 评论 -
29、基于搜索的测试生成与OpenCV人脸检测参数优化
本文探讨了基于搜索的测试生成技术在识别真实故障时面临的挑战,并分析了适应度函数指导不足、复杂输入需求、特定环境因素、相关类测试以及代码更改导致测试用例无效等问题。同时,文章介绍了通过深度参数优化技术提升OpenCV中Viola-Jones人脸检测算法性能的方法,利用NSGA-II算法对关键参数进行调整,在执行时间与分类准确性之间实现了有效权衡。研究为未来软件测试与优化提供了可行方向。原创 2025-08-13 11:06:45 · 35 阅读 · 0 评论 -
28、软件优化与测试:API 约束遗传改进及搜索式测试生成挑战
本文探讨了API约束遗传改进与搜索式测试生成在软件优化和测试中的应用与挑战。首先,介绍了API约束遗传改进的过程和成果,包括代码突变、筛选和性能提升的实践;其次,分析了搜索式测试生成在Mockito项目中检测真实故障的困难与原因;最后,总结了两者之间的关联与启示,并展望了未来的发展方向。研究为软件优化和自动化测试提供了宝贵的经验和改进思路。原创 2025-08-12 14:40:11 · 64 阅读 · 0 评论 -
27、自动化测试与遗传改进技术在软件领域的应用
本博客探讨了自动化测试与遗传改进技术在软件领域的应用。第一部分介绍了基于TESTAR的Web应用自动化测试,结合Q-learning算法优化动作选择,并以Odoo为案例研究,分析了不同参数设置对测试效果的影响。第二部分则聚焦于API约束的遗传改进技术(ACGI)在OpenCV图像分割中的应用,展示了如何通过遗传算法提升代码性能,同时保持API接口不变。博客总结了这两种技术的优势,并展望了未来的研究方向,包括改进评估指标、更换辅助功能API以及引入更复杂的元启发式算法。原创 2025-08-11 16:22:53 · 48 阅读 · 0 评论 -
26、基于搜索的代码模板泛化与优化及相关技术应用
本文探讨了软件开发领域中几个关键的研究方向,包括基于搜索的代码模板泛化与优化,OpenCV中GPGPU工作组大小的摊销优化方法,以及TESTAR工具在Web应用自动化测试中的应用。通过这些研究,为程序转换、性能优化和自动化测试提供了有效的方法和技术支持。原创 2025-08-10 13:22:30 · 45 阅读 · 0 评论 -
25、基于搜索的代码模板泛化与优化
本文探讨了基于搜索的代码模板泛化与优化方法,通过进化算法(EA)自动泛化和优化代码模板,以设计模式为实验背景,验证了该方法的有效性。文中详细介绍了进化算法的新世代创建、适应度函数设计、搜索空间缩减策略,并结合实验结果分析了不同模式下的表现及算法优势,同时指出了未来的研究方向。原创 2025-08-09 12:00:11 · 16 阅读 · 0 评论 -
24、基于搜索的代码模板泛化与细化
本文介绍了一种基于搜索的方法,用于支持程序开发中的代码模板泛化与细化。通过 Ekeko/X 工具提供的变异算子套件和单目标进化算法,开发者可以更轻松地调整代码模板,使其匹配预期的代码片段。文章详细描述了模板、变异算子、进化算法流程及适应度函数,并通过实验评估了该方法在设计模式实例泛化中的有效性。结果表明,这种方法在提高模板匹配准确性方面具有显著优势。原创 2025-08-08 15:38:12 · 38 阅读 · 0 评论 -
23、扩展有限状态机(EFSM)测试数据生成效率预测模型
本文介绍了一种基于多基因遗传编程(MGGP)的扩展有限状态机(EFSM)测试数据生成效率预测模型。通过构建影响因素矩阵并结合MGGP算法,实现了对测试生成效率的准确预测。实验结果表明,该模型在多个EFSM对象上均表现出良好的预测能力,并优于BP模型、GP模型等其他方法。同时,研究还分析了主成分分析对模型性能的影响,并探讨了数据预处理和参数调整等实际应用建议。原创 2025-08-07 16:21:22 · 56 阅读 · 0 评论 -
22、基于搜索聚类的软件多样化更新保护及EFSM测试数据生成效率预测
本文探讨了两种在软件保护和软件测试领域中的关键方法。首先提出了一种基于搜索聚类的软件多样化更新保护方法,通过减少冗余混淆和部署差异性较大的软件版本,提高了软件的安全性,并通过实证评估验证了其有效性。其次,针对EFSM测试数据生成效率问题,构建了一种基于多基因遗传编程(MGGP)的预测模型,并通过实验验证了其优越的预测能力,相比标准GP和BP神经网络模型表现更优。研究成果为软件保护和测试提供了新的思路和方法支持。原创 2025-08-06 09:21:20 · 99 阅读 · 0 评论 -
21、基于搜索聚类的多样化更新软件保护方法
本文介绍了一种基于搜索聚类的多样化更新软件保护方法,旨在通过生成多样化的代码版本提高软件的安全性和可靠性。方法包括过滤孪生混淆、基于相似度的聚类划分以及多种搜索启发式算法(如贪心凝聚聚类、爬山法和遗传算法)的应用。实验结果表明,该方法能够有效识别具有高多样性的代码版本集,为软件更新提供安全保障。未来的研究方向包括优化搜索策略、改进相似度度量以及拓展应用范围。原创 2025-08-05 12:40:54 · 78 阅读 · 0 评论 -
20、开源软件漏洞优先级排序与推荐及软件多样化更新保护策略
本文探讨了两种软件安全领域的关键技术:一是基于自动化推荐的开源漏洞优先级排序方法 PRBugs,该方法利用开发者贡献领域匹配最优解决方案;二是基于搜索聚类的软件多样化更新保护策略,通过生成结构多样但功能等效的版本,提高软件对抗逆向工程攻击的能力。文章详细介绍了两种方法的技术流程、实验验证结果,并与传统方法进行了比较,展示了其在效率、准确性与安全性方面的优势。最后,对未来发展提出了优化方向与研究展望。原创 2025-08-04 13:16:28 · 51 阅读 · 0 评论 -
19、多目标方法对缺陷进行优先级排序和推荐
本文介绍了一种基于多目标优化的软件缺陷优先级排序与推荐方法。该方法结合社区反馈和领域专家意见,在优先级排序阶段通过最大化重要性(importance)和最小化风险(risk)生成帕累托前沿,并在推荐阶段根据开发者的经验水平选择最合适的解决方案。实验表明,NSGA-II 在多个评估指标上表现优异,且该方法具有一定的人类竞争力,能够有效提升缺陷管理效率。原创 2025-08-03 12:53:58 · 45 阅读 · 0 评论 -
18、逆向工程特征模型适应度函数扩展与开源仓库漏洞优先级排序
本博文探讨了两个重要的软件工程研究课题:一是逆向工程中特征模型适应度函数的扩展,重点比较了 MinDifff、Validityff 和 SATff 的性能,并提出未来改进方向;二是开源仓库中漏洞优先级排序问题,介绍 PRBugs 方法及其在多目标优化下的应用。研究展示了 SATff 在准确性和效率上的优势,以及 PRBugs 方法在提升漏洞修复效率方面的潜力。原创 2025-08-02 11:38:43 · 797 阅读 · 0 评论 -
17、逆向工程特征模型适应度函数的扩展
本文提出了一种新的适应度函数 SATff,用于逆向工程中的特征模型优化。传统的适应度函数在面对具有大量特征的产品线时存在性能瓶颈,而 SATff 通过直接处理约束集,避免枚举所有产品,从而显著提高计算效率。实证研究表明,SATff 在生成特征模型的质量方面具有良好的有效性,并且在处理大规模模型时展现出卓越的可扩展性。该方法为逆向工程领域提供了一种高效、有效的解决方案,具有广泛的应用前景。原创 2025-08-01 09:36:08 · 709 阅读 · 0 评论 -
16、遗传编程中用于程序修复的改进交叉算子及特征模型逆向工程适应度函数的扩展
本博文探讨了遗传编程在程序修复和特征模型逆向工程中的应用与改进。研究重点包括改进的交叉算子对程序修复成功率和效率的影响、新表示法的潜力以及记忆化机制的作用。实验表明,Unif1Space交叉算子在成功率上表现最佳,而记忆化机制对于某些破坏性较强的算子具有显著效率提升作用。此外,针对特征模型逆向工程,提出了一种新的适应度函数SATff,通过计算染色体和参考约束之间的差异来模拟有效性,大幅提升了时间效率,尤其适用于大规模特征模型。未来的研究方向包括算子优化、深入挖掘记忆化机制的潜力、新表示法的应用拓展以及SAT原创 2025-07-31 11:13:08 · 746 阅读 · 0 评论 -
15、遗传编程用于程序修复的改进交叉算子
本文提出了一种改进的遗传编程方法用于程序修复,重点解决现有补丁表示方式在交叉操作中难以重组小粒度构建块的问题。通过解耦操作、故障和修复三个子空间,设计了六个新的交叉算子,并引入记忆机制以减少交叉过程中的信息丢失。实验表明,新的交叉算子在多个基准测试中显著提高了修复率,其中Unif1Space无记忆版本的提升幅度达到34%。研究为进化程序改进技术提供了更有效的搜索和重组机制。原创 2025-07-30 15:31:47 · 33 阅读 · 0 评论 -
14、进化算法替代方案的意外探索
本文探讨了多目标优化领域中几种算法的性能与特点,重点比较了GALE、SWAY、NSGA-II和SPEA2等算法在评估次数、分布和超体积指标上的表现。实验发现,SWAY4在评估次数和结果质量之间取得了良好的平衡,其成功可能归因于对低维潜在空间的有效探索。文章还分析了SWAY的原理,指出简单采样算法在某些情况下可以媲美甚至超越传统进化算法,并提出了未来基于低维流形改进MOEA算法的研究方向。此外,文章反思了当前研究文化对复杂改进的偏好,强调简化和去除冗余的重要性。原创 2025-07-29 14:50:22 · 42 阅读 · 0 评论 -
13、基于搜索的软件工程中进化算法替代方案的意外探索
本文探讨了基于搜索的软件工程(SBSE)中进化算法(EA)的替代方案,重点介绍了SWAY算法的原理、实验结果及其在软件工程多目标优化问题中的应用。通过对比SWAY与传统进化算法(如NSGA-II、SPEA2和GALE)在XOMO和POM3模型中的性能,研究发现SWAY在显著减少评估次数的同时,能够达到与传统方法相近的优化效果,表明采样技术在多维优化问题中具有重要潜力。原创 2025-07-28 15:56:43 · 40 阅读 · 0 评论 -
12、基于搜索的集成电路压力测试方法
本文介绍了一种基于搜索的集成电路压力测试方法,重点探讨了动态测试数据生成算法和软件测试执行框架的实现。通过爬山算法生成测试数据,并利用Linux Perf工具捕获性能监控单元(PMU)的数据停顿周期数作为适应度评分。实验结果显示,基于搜索的测试方法在数据停顿周期数上显著优于手工和随机测试方法,验证了其在硬件缓存一致性平台压力测试中的有效性。同时,文章也讨论了该方法的局限性和未来发展方向,如多目标适应度函数和更高级的搜索算法的应用。原创 2025-07-27 15:58:00 · 106 阅读 · 0 评论 -
11、基于搜索的集成电路压力测试方法
本文提出了一种基于搜索技术的集成电路压力测试方法,以解决传统手工测试在效率、可重用性和不确定性方面的不足。研究聚焦于 ARM 的 CoreLink 缓存一致性互连(CCI),通过使用爬山算法自动生成测试用例,从有效负载大小、稀疏性和参与者配置文件三个维度进行测试表示,以最大化 CCI 的压力。实验结果表明,该方法生成的测试集相比手工测试集能够显著增加数据停顿周期数,从而更有效地评估 CCI 的性能瓶颈。此外,还讨论了相关工作和未来研究方向,包括搜索算法优化、多目标测试以及扩展到其他硬件组件等。原创 2025-07-26 12:48:57 · 118 阅读 · 0 评论 -
10、基于搜索的过程式程序测试方法对比研究
本文对比研究了两种测试用例生成方法MOSA和LIPS在过程式程序测试中的表现。通过实验评估发现,LIPS在覆盖率和效率方面优于MOSA,但生成的测试套件较大。而MOSA在测试套件大小方面更具优势。研究还探讨了不同场景下的性能表现及实际应用建议,并提出了未来的研究方向。原创 2025-07-25 14:04:34 · 60 阅读 · 0 评论 -
9、配置参数约束验证与过程式程序搜索测试方法对比
本文探讨了配置参数约束验证与过程式程序搜索测试方法的原理、优势及局限性。重点对比了组合交互测试(CIT)与特征模型(FMs)在可配置系统测试中的应用,并分析了OCELOT工具中多目标方法(MOSA)和迭代单目标方法(LIPS)在C程序测试中的性能表现。同时,文章提出了实际应用建议和未来研究方向,旨在提升复杂系统的测试效率和质量。原创 2025-07-24 10:11:36 · 54 阅读 · 0 评论 -
8、组合测试策略:验证与评估
本文介绍了多种组合测试策略,并通过实验评估了它们的性能和故障检测能力。文章讨论了不同策略的优缺点,包括无约束CIT(UC)、有约束CIT(CC)、违反约束CIT(CV)、组合并集(CuCV)、约束有效性CIT(ValC)和约束的CIT(CCi)。实验结果表明,不同的策略适用于不同的测试需求和系统特点,为软件测试工作提供了有效的参考方法。原创 2025-07-23 10:44:30 · 73 阅读 · 0 评论 -
7、基于搜索的软件测试优化与配置参数约束验证
本文探讨了软件测试中的两个核心问题:基于搜索的测试套件最小化与可配置系统的组合交互测试(CIT)优化。在测试套件最小化方面,提出将故障检测与定位合并,采用多目标优化技术,有效提升测试效率并实现高缩减率。针对可配置系统的测试挑战,引入了CIT技术,并通过扩展策略生成测试用例,特别强调无效配置测试的重要性,以发现模型与实现中的一致性故障。文章还展望了未来研究方向,包括提升故障定位效果、提供更多故障相关信息,以及实现测试流程的自动化整合与通用化。原创 2025-07-22 13:04:55 · 54 阅读 · 0 评论 -
6、基于搜索的测试套件最小化:故障检测与定位的多目标优化
本文探讨了基于搜索的测试套件最小化方法在故障检测与定位中的多目标优化应用。通过使用多目标遗传算法NSGA-II,综合优化测试套件缩减率、代码覆盖率和语句分区数,以提高测试效率和质量。实验结果表明,该方法在故障检测方面表现出色,FD分数约为99.65%,并且在测试套件缩减率上通常保持至少70%。文章还分析了当前方法的优势、问题,并提出了改进建议和未来研究方向,适用于资源受限和回归测试场景。原创 2025-07-21 14:20:12 · 71 阅读 · 0 评论 -
5、软件优化:HOMI与测试套件最小化方法解析
本文探讨了软件优化中的两种重要方法:HOMI(高阶突变体搜索优化软件)和基于搜索的测试套件最小化方法(MoTSM)。HOMI通过语法突变优化软件的时间和内存性能,结合深度参数优化提升程序效率,同时考虑了内部和外部有效性威胁及应对措施,并与其他相关方法进行对比分析。MoTSM则采用多目标优化技术,协同驱动故障检测与故障定位,通过NSGA-II算法实现测试套件最小化,有效提高测试效率和质量。文章还深入分析了测试套件缩减策略、故障检测与定位的协同优化以及未来发展方向,为软件优化和测试提供了重要的技术支持和研究方向原创 2025-07-20 15:20:59 · 132 阅读 · 0 评论 -
4、HOMI:通过搜索高阶突变体实现软件性能优化
本文介绍了一种基于高阶突变体搜索的软件性能优化方法——HOMI。该方法通过生成一阶突变体(GI-FOMs)并进行敏感性分析,随后利用进化算法搜索高阶突变体(GI-HOMs),以进一步优化程序的运行时间和内存消耗。实验表明,HOMI在多个程序上实现了显著的性能提升,同时结合内存突变运算符和深度参数优化技术,进一步增强了优化效果。文章还比较了HOMI与基于‘整形手术’遗传编程方法的差异,并探讨了其在实际应用中的潜力与挑战。原创 2025-07-19 15:34:32 · 193 阅读 · 0 评论 -
3、基于搜索的JUnit测试生成中的Java企业版支持与HOMI方法的软件性能优化
本文探讨了在基于搜索的JUnit测试生成中对Java企业版(JEE)的支持,以及HOMI方法在软件性能优化中的应用。通过扩展EvoSuite工具,实现了对JEE核心特性的支持,提高了测试的分支覆盖率,特别是在具有挑战性的类上效果显著。HOMI方法利用高阶变异技术,在保持可扩展性的同时,以更细的粒度优化软件的非功能属性,如执行时间和内存消耗。实验表明,HOMI方法在多个开源程序上实现了显著的性能改进。文章还总结了相关工作,并展望了未来的研究方向。原创 2025-07-18 11:50:30 · 31 阅读 · 0 评论 -
2、Java Enterprise Edition支持下的搜索式JUnit测试生成
本文探讨了如何通过扩展自动化测试工具EvoSuite,以支持Java Enterprise Edition(JEE)应用程序的JUnit测试生成。文章介绍了JEE的核心功能,如依赖注入、JPA、JNDI等,并分析了EvoSuite在测试JEE代码时的限制。通过改进EvoSuite的搜索空间和对JEE环境的插桩,实现了对依赖注入、数据库处理和JNDI的模拟,从而生成高质量的测试用例。结果表明,扩展后的EvoSuite显著提升了代码覆盖率,并能有效发现潜在的异常和Bug。最后,文章展望了未来在自动化测试工具扩展原创 2025-07-17 13:57:28 · 56 阅读 · 0 评论 -
1、第八届基于搜索的软件工程国际研讨会亮点回顾
第八届基于搜索的软件工程国际研讨会(SSBSE 2016)首次在北美举办,展示了 SBSE 领域的最新研究成果和发展趋势。会议涵盖了多个研究方向,包括测试套件优化、软件改进、配置参数验证、程序修复等,并探讨了 Java Enterprise Edition 在搜索式 JUnit 测试生成中的挑战与解决方案。此外,会议还强调了技术创新、跨领域融合及工业应用的未来发展方向。原创 2025-07-16 09:24:21 · 32 阅读 · 0 评论
分享