微星GS73VR 6RF + Linux Mint 18 + GTX1060 + CUDA8.0 + OpenCV3.0.0 + Caffe安装笔记

1 篇文章 0 订阅
1 篇文章 0 订阅

1. 笔记本基本信息:

最近入手一台微星笔记本GS73VR 6RF, 双显卡: Intel的集显 + NVIDIA GTX1060, 本人用Ubuntu16.04尝试过安装 nvidia-367, nvidia-375等,装完重启后会出现循环登陆的问题,一直未能解决。 因此暂时放弃ubuntu,改用Linux Mint 18进行尝试,此文为完整(微星GS73VR 6RF + Linux Mint 18 + GTX1060 + CUDA8.0 + OpenCV3.0.0 + Caffe ) 成功安装记录。


2.Win10/Linux Mint 18双系统安装:

首先在预装的win10系统下磁盘中取出300G,用制作好的Mint18的U盘启动盘安装Win10/Linux Mint 18双系统, 重启进入bios后,修改启动顺序为USB优先, 然后进行Mint系统的安装,选择something else,对win10中分出来的300G进行分区,(/boot:200M, swap area: 16G, / : 100G, 剩余全部给 /home), 等待十几分钟后安装完毕。


3.Linux Mint 18 无线不能上网问题解决方案:

双系统装完之后, linux mint 18中无线/有线都没有网络, 通过终端输入命令:lspci -v | grep Atheros 后, 会发现有线网卡驱动是:   Qualcomm Atheros Killer E2400 Gigabit Ethernet Controller;无线网卡驱动是:   Qualcomm Atheros QCA6174 802.11ac Wireless Network Adapter。 这个问题在安装Ubuntu16.04的时候也遇到过,通过问题关键词的搜索后,尝试如下解决方案后, 亲测Ubuntu16.04和Linux Mint 18的无线有线均可以上网了。

      3.1 去github上: https://github.com/kvalo/ath10k-firmware  下载ath10k到本地


      3.2 cd 到 /lib/firmware/ath10k目录下,重命名已有的QCA6174文件夹名为QCA6174_OLD:

    sudo mv QCA6174  QCA6174_OLD

      3.3 cd 到下载下来的ath10k-firmware-master文件夹下,将其中的QCA6174文件夹拷贝到/lib/firmware/ath10k中:

    sudo cp QCA6174 /lib/firmware/ath10k
     

      3.4 cd 到 /lib/firmware/ath10k目录下,重命名新的QCA6174文件夹中hw3.0目录下的两个文件名为: firmware-4.bin和notice.txt


      3.5 重启后,无线/有线都可以了。





4.安装Nvidia显卡:

装完无线驱动能上网后,开始更新nvidia驱动, 直接去Linux Mint 18的System Settings,找到最下面的Driver Manager,它会先进行更新,更新完成后,会跳出两个可选显卡驱动的选项,系统为你推荐了nvidia-367,直接勾选后,点击Apply Changes,退出后重启即可。



重启之后,会在Mint的右下角出现Nvidia x server Settings的图标,在其中可以看到当前使用的显卡,已经更新为NVIDIA GTX1060了。


终端terminal中输入命令: nvidia-smi后,出现以下信息,表示安装成功:



5. 安装CUDA8.0和cudnn v5.1

nvidia官网上下载cuda_8.0.27_linux.run, 终端terminal进入下载目录, 执行命令: 

sudo sh cuda_8.0.27_linux.run  --override

启动安装程序,一直按空格到最后,输入accept接受条款
输入n不安装nvidia图像驱动,之前已经安装过了
输入y安装cuda 8.0工具
回车确认cuda默认安装路径:/usr/local/cuda-8.0
输入y用sudo权限运行安装,输入密码
输入y或者n安装或者不安装指向/usr/local/cuda的符号链接
输入y安装CUDA 8.0 Samples,以便后面测试
回车确认CUDA 8.0 Samples默认安装路径:/home/clark ,该安装路径测试完可以删除


安装完CUDA8.0后,需要将cudnn相关头文件和so文件放入cuda8.0相应的目录中:

终端terminal中cd到cudnn解压后的文件中:

cd /home/clark/Softwares/deeplearning_softwares/cudnn;

分别将其中include中的头文件和lib64中的so文件拷贝到cuda8.0对应文件夹中, 命令如下:

cd cuda/include/
sudo cp cudnn.h /usr/local/cuda/include/ 
cd ../lib64 
sudo cp lib* /usr/local/cuda/lib64/ 
sudo chmod a+r /usr/local/cuda/include/cudnn.h  /usr/local/cuda/lib64/libcudnn*

建立软链接

终端输入
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.5
sudo ln -s libcudnn.so.5.0.5 libcudnn.so.5
sudo ln -s libcudnn.so.5 libcudnn.so
设置环境变量,终端输入
sudo gedit /etc/profile
在末尾加入
PATH=/usr/local/cuda/bin:$PATH
export PATH
保存后,创建链接文件
sudo vim /etc/ld.so.conf.d/cuda.conf
按i进入插入模式,增加下面一行
/usr/local/cuda/lib64
按esc退出插入模式,按:wq保存退出
最后在终端输入sudo ldconfig使链接生效

cuda Samples测试

打开CUDA 8.0 Samples默认安装路径,终端输入
cd /home/clark/Workspace/CUDA_Samples/NVIDIA_CUDA-8.0_Samples
sudo make all -j4 (4核)

出现“unsupported GNU version! gcc versions later than 5.3 are not supported!”的错误,这是由于GCC版本过高,在终端输入
cd /usr/local/cuda-8.0/include
sudo cp host_config.h host_config.h.bak
sudo gedit host_config.h
ctrl+f寻找有“5.3”的地方,只有一处,如下
# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ > 3)
#error -- unsupported GNU version! gcc versions later than 5.3 are not supported!
将两个5改成6,即
#if __GNUC__ > 6 || (__GNUC__ == 6 && __GNUC_MINOR__ > 3)
保存退出,继续在终端输入
cd /home/clark/Workspace/CUDA_Samples/NVIDIA_CUDA-8.0_Samples 
sudo make all -j4 (4核)
完成后继续向终端输入
cd bin/x86_64/linux/release
./deviceQuery
完成之后出现如下图所示,表示成功安装cuda



6. 安装OpenCV 3.0

caffe中需要用到opencv 3.0, 所以需要先安装opencv3, 从OpenCV官网中下载opencv3.0.0版本到本地

首先需要安装opencv的依赖:

先删除已经安装过的依赖
sudo apt-get -qq remove ffmpeg x264 libx264-dev
 
sudo apt-get -y install build-essential cmake pkg-config libtiff4-dev libjpeg-dev libjasper-dev libavcodec-dev 
sudo apt-get -y install libavformat-dev libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev
sudo apt-get -y install libv4l-dev libtbb-dev libgtk2.0-dev libfaac-dev libmp3lame-dev unzip
sudo apt-get -y install libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev ibvorbis-dev libxvidcore-dev x264 v4l-utils ffmpeg 

在本地编译安装opencv3.0.0

cd /home/clark/Compile/opencv-3.0.0/opencv-master/
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release ..
make -j4
sudo make install
默认安装, 头文件会在/usr/local/include中, so文件在/usr/local/lib中。


7. 安装Caffe

caffe的依赖包

sudo apt-get install build-essential #必要的编译工具依赖
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

#安装pip和easy_install

sudo apt-get install python-pip
sudo apt-get install python-setuptools 

#从github上下载caffe源码
sudo apt-get install git
git clone https://github.com/BVLC/caffe.git

#安装Python依赖
cd /home/clark/Compile/caffe-master/python
sudo su
for req in $(cat "requirements.txt"); do pip install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
exit

caffe的依赖安装完毕后,开始编译caffe源码

cd /home/clark/Compile/caffe-master/
cp Makefile.config.example Makefile.config
vim Makefile.config

配置文件修改如下:
USE_CUDNN := 1 #取消该句注释    
OPENCV_VERSION := 3 #取消该句注释  
PYTHON_INCLUDE := /usr/include/python2.7 /usr/lib/python2.7/dist-packages/numpy/core/include    
WITH_PYTHON_LAYER := 1 #取消注释    
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/local/include/opencv /usr/local/include/opencv2 /usr/include/hdf5/serial   
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

cd /usr/lib/x86_64-linux-gnu
sudo ln libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
sudo ldconfig

make all -j4


make test -j4
make runtest -j4
make pycaffe -j4
make distribute



cd /home/clark/Compile/caffe-master/python

python
import caffe




8.测试例子:

# 下载mnist数据集
cd /home/clark/Compile/caffe-master/data/mnist/
./get_mnist.sh 获取mnist数据集
在/home/clark/Compile/caffe-master/data/mnist/目录下会多出训练集图片、训练集标签、测试集图片和测试集标签等4个文件

# mnist数据格式转换
cd /home/clark/Compile/caffe-master
./examples/mnist/create_mnist.sh #(此时在/caffe/examples/mnist/目录下生成mnist_test_lmdb和mnist_train_lmdb两个LMDB格式的训练集和测试集)

# 训练mnist
cd /home/clark/Compile/caffe-master
./examples/mnist/train_lenet.sh



参考:
ath10k installation
ubuntu16.04+gtx1060+cuda8.0+caffe安装、测试经历
Ubuntu16.04+cuda8.0+GTX1080+matlab14.04a+Opencv3.0+caffe 安装教程



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值