一、明确考试重点
GESP七级C++组的核心考察内容包括:
-
-
复杂动态规划:二维动态规划、动态规划的最值优化。
-
图论算法:图的定义与遍历(DFS、BFS)、泛洪算法(Flood Fill)、最小生成树(Kruskal、Prim)、最短路径(Dijkstra、Floyd)。
-
数学与算法:哈希表的实现与应用、组合数学(排列组合、杨辉三角)、倍增法。
-
高级数据结构:图的邻接表/矩阵表示、复杂动态规划的状态转移方程设计。
-
二、分阶段备考计划(四周时间)
第一周:知识体系梳理与基础巩固
-
动态规划专题
-
重点内容:
-
二维动态规划(如最长公共子序列、矩阵路径问题)。
-
动态规划最值优化(如背包问题的空间优化、状态压缩)。
-
-
练习题目:
-
-
完成5道经典二维DP题目(如“编辑距离”“最大子矩阵和”)。
-
实现动态规划的时间复杂度优化(如滚动数组)。
-
-
-
-
图论基础
-
学习目标:
-
掌握图的存储方式(邻接表、邻接矩阵)。
-
实现DFS/BFS遍历、泛洪算法。
-
-
实践案例:
-
编写图的遍历代码(如迷宫问题、岛屿数量统计)。
-
完成1-2道最短路径基础题(如Dijkstra单源最短路径)。
-
-
第二周:高频考点突破
-
图论进阶
-
重点算法:
-
最小生成树(Kruskal、Prim算法)。
-
最短路径(Floyd多源最短路径)。
-
-
练习建议:
-
实现Kruskal算法(需结合并查集)。
-
完成Floyd算法的模板代码(处理多源最短路径问题)。
-
-
-
动态规划优化
-
难点攻克:
-
状态转移方程的设计(如区间DP、树形DP)。
-
复杂问题拆解(如多维状态压缩)。
-
-
典型题目:
-
“石子合并”(区间DP)、“旅行商问题”(状态压缩)。
-
-
-
哈希表与组合数学
-
学习内容:
-
哈希表的冲突解决方法(开放寻址法、链地址法)。
-
排列组合公式的应用(如杨辉三角递推)。
-
-
实践:
-
手写哈希表实现(如处理字符串哈希)。
-
-
第三周:真题实战与综合应用
-
历年真题训练
-
资源推荐:
-
洛谷真题https://www.luogu.com.cn/training/557#problems
-
客观题可以做计蒜客的gesp题单
-
-
训练方法:
-
模拟考试环境,限时完成编程题。
-
分析参考答案,对比代码效率与逻辑差异。
-
-
-
错题复盘与优化
-
整理错题本,标注错误原因(如逻辑错误、时间复杂度高)。
-
针对高频错误点(如动态规划边界条件)专项突破。
-
步骤:
-
-
综合项目实践
-
实现一个简单的交通路径规划系统(结合图的最短路径算法)。
-
动态规划解决资源分配问题(如任务调度优化)。
-
推荐项目:
-
第四周:冲刺与查漏补缺
-
高频考点速记
-
核心公式与模板:
-
最短路径算法的代码模板(Dijkstra、Floyd)。
-
动态规划状态转移方程模板(如背包问题、最长递增子序列)。
-
-
记忆技巧:
-
制作思维导图,梳理算法间的关联(如DFS与回溯法的区别)。
-
-
-
模拟考试与时间管理
-
每周2-3次全真模拟(使用空白真题卷)。
-
记录编程题的平均耗时,优化时间分配。
-
安排:
-
-
考前注意事项
-
调试技巧:
-
学会使用断点调试和输出中间变量定位逻辑错误。
-
-
代码规范:
-
变量命名清晰,注释关键步骤(方便阅卷评分)。
-
-
三、每日学习安排建议(30天计划)
-
理论学习(如动态规划优化技巧、图论算法推导)。
-
编码实践(完成3-5道针对性编程题)。
-
复盘总结(整理笔记、分析错题、参与编程社区讨论)。
四、推荐资源
-
教材与题库:
-
《算法竞赛入门经典》(动态规划与图论章节)。
-
GESP历年真题(https://www.luogu.com.cn/training/557#problems)。
-
-
在线练习平台:
-
牛客网(专项算法题库)、LeetCode(动态规划高频题)。
-
通过以上规划,结合每天3-4小时的高效学习,可在1个月内系统覆盖GESP七级C++组的核心考点。重点在于真题实战与动态规划/图论的深度练习,同时注意代码规范与时间管理。