POJ 3522 Slim Span (并查集 + 枚举 + kruskal)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012823258/article/details/41551785

链接:点击打开链接

题目好长, 而且还有图片,所以就不复制粘贴过来了,这道题的大意是:

一棵树T(连通无环子图)将用n-1条边连接原图的所有的n个顶点,生成的生成树的最大权值边与最小权值边的差(称“苗条值”)尽量小,找出这个最小的苗条值;


思路:

用kruskal枚举;

首先对每条边的权值从小到大进行排序;

枚举每条边为最小边生成最小生成树,并计算这样的生成树的苗条值,枚举玩所有的情况就可以求出苗条值;


代码解析如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <cmath>
#include <algorithm>
#define MAXN 1000005
#define RST(N)memset(N, 0, sizeof(N))
using namespace std;

typedef struct Edge_
{
    int x, y;
    int rank;
}Edge;

Edge edge[MAXN];
int n, m, res, Kc, father[MAXN];

int cmp(const void *a, const void *b)
{
    Edge *p1 = (Edge *)a;
    Edge *p2 = (Edge *)b;
    return p1->rank - p2->rank;
}

int find(int x)    //路径压缩寻找父节点
{
    return x == father[x] ? x : find(father[x]);
}

int solve(int x)
{
    int cnt = 0;
    for(int i=1; i<=n; i++) father[i]=i;
    for(int i=x; i<m; i++) {       //kruskal试生成最小生成树;
        int fx = find(edge[i].x);
        int fy = find(edge[i].y);
        if(fx != fy) {
            father[fx] = fy;   
            cnt++;
        }
        if(cnt == n-1) return edge[i].rank-edge[x].rank;
    }
    return MAXN;
}

int main()
{
    while(~scanf("%d %d", &n, &m) && n || m) {
        res = MAXN;
        for(int i=0; i<m; i++) {
            scanf("%d %d %d", &edge[i].x, &edge[i].y, &edge[i].rank);
        }
        qsort(edge, m, sizeof(Edge), cmp);   //权值从大到小;
        for(int i=0; i<=m-n+1; i++) {     //从0 ~ m-(n-1)的范围枚举
            res = solve(i) < res ? solve(i) : res;   //寻找最小差值;
        }
        if(res == MAXN) res = -1;    //不存在的话
        printf("%d\n", res);
    }
    return 0;
}


展开阅读全文

没有更多推荐了,返回首页