感谢这篇文章
本文对其代码,进行一些解释。
这道题的题意很明了。求最大边与最小边差值最小的生成树
首先,把所有的生成树都求出来是不可能的,所以,必须用别的方法。
在学习次小生成树的过程中,知道了一个最小生成树的性质, 一个图的最小生成树不一定是唯一的,但是组成这些最小生成树的各个边的权值一定都是一一对应相同的。不会出现这种一个树上有两个边权值a+b等于另外一颗树上两个边c+d,然后这两个树都是最小生成树的情况。
对于本题来讲,上面那个性质就说明了一个图的最小生成树上的最小边的权值和最大边的权值是固定不变的。那么当使用克鲁斯卡尔算法时,第一次加入的必然是边权最小的边,由于克鲁斯卡尔算法的正确性已经得到验证过,那么此边的权值必然就是最小生成树的最小边权值了,当最小边的权值固定时,最小生成树的最大边的权值也“命中注定”是固定的,在最小边权值固定的情况下,其他的生成树的最大边必然也是大于等于最小生成树的最大边,否则就不满足我们上文提到的性质,这就是“当生成树的最小边确定时,最小生成树的最大边的权值是所有生成树中最小的”。从而,我们得到了一个本题的解法。 枚举最小边,然后求最小生成树,更新最优解。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<string>
#include<queue>
#include<map>
#include<stack>
#include<set>
//#include<unordered_map>
#include<ctime>
using namespace std;
typedef long long ll;
#define pi pair<int,int>
#define mst(ss,b) memset(ss,b,sizeof(ss));
#define rep(i,k,n) for(int i=k;i<=n;i++)
#define INF 0x3f3f3f3f
const int N = 1e4 + 10;
// e[i] 表示第i条边的信息(连接u和v,权值为w)
struct edge
{
int u, v, w;
edge(int u1=0,int v1=0,int w1=0):u(u1),v(v1),w(w1){}
bool operator <(const edge e1)
{
return this->w < e1.w;
}
}e[N];
bool vis[N];
int n, m;
int fa[N];
void init()
{
for (int i = 0; i <= n; ++i)
fa[i] = i;
}
int find(int x)
{
if (fa[x] == x)return x;
else
return fa[x] = find(fa[x]);
}
void join(int x,int y)
{
x = find(x);
y = find(y);
if (x != y)
fa[x] = fa[y];
}
bool same(int a, int b)
{
return find(a) == find(b);
}
int Kruskal()
{
sort(e + 1, e + m+1);
int flag = 0, ans = INF;
//枚举每一个最小边,
for (int i = 1; i <= m; ++i)
{
init();//并查集初始化
int cnt = 1;
//以该边来构建最小生成树的最大边权,和最小边权
int hight = e[i].w, low = e[i].w;
//加入这条边
join(e[i].u, e[i].v);
//从该边后面的边选边组成最小生成树
for (int j = i+1 ; j <= m; ++j)
{
if (!same(e[j].u, e[j].v))
{
join(e[j].u, e[j].v);
hight = max(hight, e[j].w);
cnt++;
}
if (cnt == n - 1)break;
}
if (cnt == n - 1)//如果能构成了最小生成树
{
flag = 1;
//更新
ans = min(ans, hight - low);
}
}
if (!flag)return -1;
else
return ans;
}
int main()
{
while (~scanf_s("%d%d", &n, &m)&&(n||m))
{
mst(e, 0);
for (int i = 1; i <= m; ++i)
scanf_s("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
printf("%d\n", Kruskal());
}
return 0;
}