fzu 2107 Hua Rong Dao(回溯)

223 篇文章 1 订阅
30 篇文章 0 订阅
博客介绍了fzu 2107题目的详细解题过程,主要涉及的问题是在一个n*4的网格中放置一个2*2的矩形(代表曹操)以及其他三种矩形的排列组合。解题策略是通过回溯算法枚举曹操的不同位置以及所有可能的矩形布局,从而计算出所有合法的解决方案数量。
摘要由CSDN通过智能技术生成

题目链接:fzu 2107 Hua Rong Dao


题目大意:给出n(1≤n≤4)然后在一个n * 4的格子上放矩形,必须放一个2*2的(为题目背景下的曹操),然后剩余的位置要用三种矩形拼接。


解题思路:先枚举曹操的位置,然后用回溯的方式枚举出所有可能,计算总数。


#include <stdio.h>
#include <string.h>

const int N = 10;

const int d[4][2] = { {0, 0}, {0, 1}, {1, 0}, {1, 1} };
const int dir[3][3][2] = { { {0, 1}, {0, 0} }, { {1, 0}, {0, 0} }, { {0, 0} } };
const int cnt[3] = {2, 2, 1};

int r, v[N][N], tmp;
const int c = 4;

bool isInsert(int k, int x, int y) {
	for (int i = 0; i < cnt[k]; i++) {
		int p = x + dir[k][i][0], q = y + dir[k][i][1];
		if (p <= 0 || p > r) return false;
		if (q <= 0 || q > c) return false;
		if (v[p][q]) return false;
	}
	return true;
}

void clear(int k, int x, int y, int t) {
	for (int i = 0; i < cnt[k]; i++) {
		int p = x + dir[k][i][0], q = y + dir[k][i][1];
		v[p][q] = t;
	}
}

void dfs(int x, int y) {
	if (y > c)	x = x + 1, y = 1;

	if (x == r + 1) {
		tmp++; 
		return;
	}

	if (v[x][y]) dfs(x, y + 1);

	for (int i = 0; i < 3; i++) {
		if (isInsert(i, x, y)) {
			clear(i, x, y, 1);
			dfs(x, y + 1);
			clear(i, x, y, 0);
		}
	}
}

int find(int x, int y) {
	memset(v, 0, sizeof(v));
	for (int i = 0; i < 4; i++)
		v[x + d[i][0]][y + d[i][1]] = 1;
	tmp = 0;
	dfs(1,  1); 
	return tmp;
}

int solve() {

	int ans = 0;
	for (int i = 1; i < r; i++) {
		for (int j = 1; j < c; j++) {
			ans += find(i, j);
		}
	}
	return ans;
}

int main () {
	int t[10];
	for (r = 1; r <= 4; r++) {
		t[r] = solve();
	}

	int cas, n;
	scanf("%d", &cas);
	while (cas--) {
		scanf("%d", &n);
		printf("%d\n", t[n]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值