硬码农二毛哥
FPGA工程师经验分享,介绍完整FPGA项目开发过程,内容涉及硬件、软件和逻辑。
展开
-
Vitis加速应用设计
Vitis官方文档主要有两个ug1400和ug1393,ug1400主要针对嵌入式软件设计,ug1393针对应用加速设计。本文结合以上两个文档,主要针对Zynq®-7000 SoCs, 和Zynq® UltraScale+™ MPSoCs.应用加速开发流程进行简要介绍。1、支持平台加速应用支持Xilinx加速卡,Zynq®-7000 SoCs, 和Zynq® UltraScale+™ MPSoCs.器件,Artx®-7, Kintex®-7, Virtex®-7系列器件不支持加速应用。2、安装要求系原创 2021-02-21 14:09:22 · 1004 阅读 · 2 评论 -
Vitis AI VART自动驾驶应用
Vitis AI提供两种应用例程,VART和Vitis AI Library,下文详细描述了VART中自动驾驶应用的实现过程。编译AI模型对于DNNDK API和VART API编译AI库的方式相同,编译yolov3模型yolov3模型用于自动驾驶。$~/Vitis-AI/AI-Model-Zoo/all_models_1.2/caffe$cp -r dk_yolov3_cityscapes_256_512_0.9_5.46G_1.2/ ../../../Tool-Example/$cd ~原创 2021-08-12 19:58:30 · 1438 阅读 · 4 评论 -
在Vitis中编译Vitis AI Library应用
如何将Vitis AI Library应用加入Vitis进行编译,生成可执行文件?Vitis AI Library应用编译在不使用vitis的情况下,vitis ai library编译方法如下://以refinedet为例$cd ~/Vitis-AI/Vitis-AI-Library/overview/samples/refinedet$bash -x build.sh运行上述指令后,生成可执行文件。build.shbuild.sh中的内容CXX=${CXX:-g++}$CXX -std原创 2021-08-22 09:25:32 · 1282 阅读 · 2 评论 -
KV260编译SmartCam应用
在KV260 AI入门开发套件简介中提到KV260有四个参考例程,smartcam是其中之一,下面介绍一下如果使用Petalinux编译smartcam应用原创 2022-03-27 21:47:29 · 1447 阅读 · 6 评论 -
KV260 AI入门开发套件简介
去年参加Xilinx技术日,知道了KV260开发套件,对它有了初步的了解,最近拿到单板,对KV260有了新的认识,跟大家分享一下。原创 2022-03-17 23:45:00 · 3721 阅读 · 2 评论 -
Vitis AI library中的模型在自定义单板使用
在Vitis AI设计中,构建模型是其中非常重要的一步。如果使用调用的模型库呢?获取DPU Kernel下载Vitis AIgit clone https://github.com/Xilinx/Vitis-AI.gitgit checkout v1.2修改DPU配置文件将Vitis-AI中的DPU-TRD文件夹拷贝到工程目录中,DPU-TRD文件夹中修改dpu_conf.vh和prj_config。将dpu_conf.vh中做如下修改:$cd DPU-TRD/prj/Vitis/$原创 2021-07-25 21:02:12 · 595 阅读 · 0 评论 -
Vitis AI DPU代码分析
Vitis AI 设计流程Vitis AI 和Vitis IDE需要下面三个基本步骤:构建模型构建硬件平台构建可执行软件Vitis AI Runtime:使用C++或Python写应用程序导入Vitis AI Library,运行编译好的模型文件。Runtime Overview Vitis AI开发套件提供high-leve C++/Python APIs(VART)进行从云到边器件开发。对于边缘DPU,除了VART,还可以使用advanced low-level原创 2021-07-18 14:07:29 · 1565 阅读 · 1 评论 -
Vitis AI Library应用
Vitis AI提供两种应用例程,VART和Vitis AI Library,下文详细描述了Vitis AI Library中refinedet应用的实现过程。编译AI模型DNNDK 和Vitis AI Library编译AI库的方式相同。编译refinedet模型RefineDet模型用来检测人体。$~/Vitis-AI/AI-Model-Zoo/all_models_1.2/caffe$cp -r cf_refinedet_coco_480_360_0.8_25G_1.2/ ../../..原创 2021-08-09 21:25:48 · 1192 阅读 · 0 评论 -
Vitis AI 编译dnndk应用
在Vitis AI library中的模型在自定义单板使用中,介绍了如何进行模型库编译,下一步要将模型加入到AI应用中进行编译,生成可执行文件.编译DNNDK AI应用DNNDK API与VART APIDNNDK API:自定义神经网络时使用。VART(Vitis-AI RunTime) API :使用Xilinx Model Zoo中的模型时使用。安装交叉编译环境进入https://github.com/Xilinx/Vitis-AI/tree/v1.2/mpsoc,下载sdk-2020原创 2021-08-01 17:27:32 · 762 阅读 · 0 评论 -
Vitis AI 运行TensforFlow模型
在百度edgeboard fzu3上运行CIFAR10 Classification,介绍Vitis AI TensorFlow设计过程,将Python描述的网络模型运行在Xilinx DPU上。CIFAR_10数据集输入图片32x32x8 RGB images,完整CIFAR数据集有60k图片,将数据集进行划分,50k进行训练,10k用来验证。DenseNet结构DenseNet-121组成:注:上图针对ImageNet。步骤拷贝文件cp -r /mnt/hgfs/ubuntu/De原创 2021-09-05 11:52:31 · 1976 阅读 · 2 评论 -
Vitis DPU加速设计流程总结
在完成如下两步的基础上再进行Vitis DPU加速设计:A base hardware design exported from Vivado® Design SuiteA base software design that includes Linux kernel, root file system,and device tree完成上述步骤后,单板可以正常启动,进入加速设计流程,下面是对vitis设计流程进行总结,更详细步骤请参考DPU。1、 在硬件平台中加入硬件接口和中断,导出xsa1 重原创 2021-05-30 20:23:19 · 2194 阅读 · 0 评论 -
Vitis下运行DNNDK例程编译错误分析与解决
Vitis下运行DNNDK例程编译错误分析与解决出现问题:最新在Vitis下运行DNNDK例程时,(例程地址https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/2020.1/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/README.md)运行到编译时,(20 Right click the hello_dpu project folder and select Build Pro原创 2021-05-30 20:11:35 · 946 阅读 · 1 评论 -
在基于ZYNQ MPSOC XCZU3CG自定义单板上运行DPU例程
在基于ZYNQ MPSOC XCZU3CG自定义单板上运行DPU例程1 参考例程新建硬件平台2 使用BSP新建Petalinux工程3 导入硬件平台4 修改设备树5 编译6 打包镜像,复制到SD卡7 Build the ResNet-50 application原创 2020-09-20 15:13:30 · 1776 阅读 · 4 评论 -
基于ZYNQ MPSOC XCZU3CG的百度Edgeboard FZU3 构建linux系统
1 硬件平台构建2 Petalinux构建软件系统3 测试原创 2020-08-08 22:16:29 · 1450 阅读 · 0 评论 -
FPGA进行AI推理方案
FPGA进行AI推理方案近期在研究FPGA进行推理时,总结了一下三种方案,目前我了解使用FPGA进行推理还是少数,不知道大家有没有做过使用FPGA进行推理的项目,欢迎交流。1 Zynq + Paddle lite第一种方案使用Zynq+Paddlelite。Paddle-Lite 框架是 PaddleMobile 新一代架构,重点支持移动端推理预测,特点高性能、多硬件、轻量级 。支持PaddleFluid/TensorFlow/Caffe/ONNX模型的推理部署。目前已经支持 ARM CPU, Ma原创 2020-08-02 17:16:42 · 3025 阅读 · 1 评论