【线性规划与网络流24题 20】深海机器人问题

机器人问题


这个题很明显跟费用有关,每个机器人可以看作是最大的通过的流量

源点S,汇点T,图中的任何一个点都是中间点,这些都好理解

那么,费用怎么理解?

求最大费用最大流啊!

不仅仅有拆点,还会有拆边!

每两个点的路径分成两条边啊:有一种边是容量为1,费用为边上的价值:(u,v,1,value);有一种边是容量是无限的,费用为0,(u,v,INF,0)

然后跑模板就好了啊


#include<bits/stdc++.h>
using namespace std;

const int maxm=1050;
const int maxn=1050;
const int INF=0x3f3f3f3f;
int s,t,tot,n,m;
int a,b;

struct Edge{
    int to,nxt,cap,flow,cost;
}edge[105000];
int Head[maxn],tol;
int mp[maxn][maxn];
int pre[maxn],dis[maxn];
bool vis[maxn];

void addedge2(int u,int v,int cap,int cost){
    edge[tol].to=v;
    edge[tol].cap=cap;
    edge[tol].cost=cost;
    edge[tol].flow=0;
    edge[tol].nxt=Head[u];
    Head[u]=tol++;
}

void addedge(int u,int v,int cap,int cost){
    addedge2(u,v,cap,cost);
    addedge2(v,u,0,-cost);
}

bool spfa(int s,int t){
    queue<int> q;
    for(int i=0;i<tot;i++){
        dis[i]=INF;vis[i]=false;pre[i]=-1;
    }
    dis[s]=0;vis[s]=true;
    q.push(s);
    while(!q.empty()){
        int u=q.front();
        q.pop();
        vis[u]=false;
        for(int i=Head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if (edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost){
                dis[v]=dis[u]+edge[i].cost;
                pre[v]=i;
                if (!vis[v]){
                    vis[v]=true;
                    q.push(v);
                }
            }
        }
    }
    if (pre[t]==-1) return false;
    return true;
}

int minCostMaxflow(int s,int t,int &cost){
    int flow=0;
    cost=0;
    while(spfa(s,t)){
        int Min=INF;
        for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
            if (Min>edge[i].cap-edge[i].flow)
                Min=edge[i].cap-edge[i].flow;
        for(int i=pre[t];i!=-1;i=pre[edge[i^1].to]){
            edge[i].flow+=Min;
            edge[i^1].flow-=Min;
            cost+=edge[i].cost*Min;
        }
        flow+=Min;
    }
    return flow;
}

int main(){
    //freopen("input.txt","r",stdin);
    while(scanf("%d%d%d%d",&a,&b,&n,&m)!=EOF){
        memset(Head,-1,sizeof(Head));
        int cost,c=0,x,y;
        tol=s=0;
        t=(n+1)*(m+1)+1;
        tot=t+1;
        for(int i=0;i<=n;i++)
            for(int j=0;j<=m;j++)
                mp[i][j]=++c;
        for(int i=0;i<=n;i++)
        for(int j=0;j<m;j++){
            scanf("%d",&c);
            addedge(mp[i][j],mp[i][j+1],1,-c);
            addedge(mp[i][j],mp[i][j+1],INF,0);
        }
        for(int j=0;j<=m;j++)
        for(int i=0;i<n;i++){
            scanf("%d",&c);
            addedge(mp[i][j],mp[i+1][j],1,-c);
            addedge(mp[i][j],mp[i+1][j],INF,0);
        }
        for(int i=0;i<a;i++){
            scanf("%d%d%d",&c,&x,&y);
            addedge(s,mp[x][y],c,0);
        }
        for(int i=0;i<b;i++){
            scanf("%d%d%d",&c,&x,&y);
            addedge(mp[x][y],t,c,0);
        }
        int flow;
        flow=minCostMaxflow(s,t,cost);
        printf("%d\n",-cost);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值