回溯法——机器人的运动范围
题目描述:
地上有一个M行和N列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格(35,37),因为3 + 5 + 3 + 7 = 18.但是,它不能进入方格(35, 38),因为3 + 5 + 3 + 8 = 19.请问该机器人能够达到多少个格子?
程序代码如下:
// If these comment is removed the program will blow up
// 如果删了这片注释程序就炸了
/***
* _ooOoo_
* o8888888o
* 88" . "88
* (| -_- |)
* O\ = /O
* ____/`---'\____
* . ' \\| |// `.
* / \\||| : |||// \
* / _||||| -:- |||||- \
* | | \\\ - /// | |
* | \_| ''\---/'' | |
* \ .-\__ `-` ___/-. /
* ___`. .' /--.--\ `. . __
* ."" '< `.___\_<|>_/___.' >'"".
* | | : `- \`.;`\ _ /`;.`/ - ` : | |
* \ \ `-. \_ __\ /__ _/ .-` / /
* ======`-.____`-.___\_____/___.-`____.-'======
* `=---='
*
* .............................................
* 佛祖保佑 永无BUG
*/
#include <iostream>
using namespace std;
/*物体在二维矩阵运动问题都可使用回溯法来解决
*从坐标(0,0)出发,判断是否大于临界值
* 不大于,说明该坐标可以进入,再接着判断相邻的四个坐标
* 大于,则说明该坐标不可进入,则返回0到上一级*/
class Solution {
public:
int movingCount(int threshold, int rows, int cols)
{
if (threshold < 0 || rows <= 0 || cols <= 0)
return 0;
bool* visited = new bool[rows*cols];
memset(visited, 0, rows*cols);
int count = movingCountCore(threshold, rows, cols, 0, 0, visited);
delete[] visited;
return count;
}
int movingCountCore(int threshold, int rows, int cols, int row,int col, bool* visited)
{
int count = 0;
if (check(threshold, rows, cols, row, col, visited))
{
visited[row*cols + col] = true;
count = 1 + movingCountCore(threshold, rows, cols, row - 1, col, visited)
+ movingCountCore(threshold, rows, cols, row, col - 1, visited)
+ movingCountCore(threshold, rows, cols, row + 1, col, visited)
+ movingCountCore(threshold, rows, cols, row, col + 1, visited);
}
return count;
}
bool check(int threshold, int rows, int cols, int row, int col, bool* visited)
{
if (row < 0 || row >= rows || col < 0 || col >= cols || visited[row*cols + col]
|| threshold < (getDigitSum(row)+getDigitSum(col)))
return false;
else
return true;
}
int getDigitSum(int num)
{
int sum = 0;
while (num)
{
sum += num % 10;
num /= 10;
}
return sum;
}
};
int main()
{
int threshold, rows, cols;
Solution s;
while (cin >> threshold >> rows >> cols)
cout << s.movingCount(threshold, rows, cols)<<endl;
return 0;
}
程序运行结果如下: