机器学习
文章平均质量分 59
kevin_123c
这个作者很懒,什么都没留下…
展开
-
梯度下降法的三种解释(BGD,SGD,MBGD).
机器学习里面,梯度下降法可以说是随处可见,虽然它不是什么高大上的机器学习算法,但是它却是用来解决机器学习算法的良药。我们经常会用到梯度下降法来对机器学习算法进行训练。 在很多介绍梯度下降的书籍里,我们看到这样的几个英文单词缩写,BGD,SGD,MBGD。也就是批量梯度下降法BGD,随机梯度下降法SGD,小批量梯度下降法MBGD。 哦儿啦,举例说明,一般一个线性回归函数的假设函数可以原创 2016-07-11 13:01:14 · 18443 阅读 · 0 评论 -
机器学习---决策树
看见这么一个图了吗?这就是决策树,很形象很生动很具体,所以决策树是什么?决策树是一类常见的机器学习方法,反正我理解就是yes no的判断嘛。 决策树是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到原创 2016-06-16 10:42:53 · 504 阅读 · 0 评论 -
机器学习--logistic回归和softmax回归
logistic回归和softmax回归放在一起总结一下,其实softmax就是logistic的推广,logistic一般用于二分类,而softmax是多分类。 logistic回归虽然也是叫回归,其实本身是用来分类的,logistic可以被看成是一种概率的估计,类似于线性回归的归一化,将输出值映射为(0,1),输入值大于0.5被分为1类,小于0.5被分为0类。原创 2016-06-15 20:09:24 · 3502 阅读 · 1 评论 -
机器学习---knn分类器
knn这个分类器,原理很简单,可以说是机器学习里面最简单的一个分类器。 工作原理:存在一个训练样本集,这些样本集都是有标签,也就是我们知道样本集中每个数据与其类别的对应关系。输入没有标签的新数据后,将新数据与样本集的数据特征进行比较,然后按照特定算法提取样本集中最相似的数据分类标签。举个例子: 电影名称 打斗镜头 接吻镜头原创 2016-06-13 19:48:46 · 1086 阅读 · 0 评论 -
机器学习--线性回归
机器学习的一些概念就不详细介绍了,大致就是分类,聚类,回归这些!不管是哪种,总之都是需要根据数据,训练出一个模型,其实机器学习的思想就是最优化,优化出一个好的模型。当然还有监督学习,无监督学习这些概念,通俗点说,分类就是给你一组数据,一组有标签的数据,举个例子就是我现在有10个数据,这个10个数据是关于三种花的,菊花,玫瑰花,月季花!我首先给出属性,颜色,大小,有无刺,花香,然后给出标签(这个标签原创 2016-06-12 11:20:20 · 511 阅读 · 0 评论 -
提高模型准确度的方法
1.增加更多的数据,越多的数据,模型越好,准确度越高 2.处理好缺失值和异常值 3.特征工程 4.特征选择 5.多种算法组合 6.算法的改进(调参) 7.集成算法(bagging,boosting 8.交叉验证(cross validation)原创 2016-08-11 13:54:31 · 2926 阅读 · 0 评论 -
递归神经网络(RNN)简介
在此之前,我们已经学习了前馈网络的两种结构——多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫。但是对于一些有明显的上下文特征的序列化输入,比如预测视频中下一帧的播放内容,那么很明显这样的输出必须依赖以前的输入, 也就是说网络必须拥有一定的”记忆能力”。为了赋予网络这样的记忆力,一种特殊结构的神经网络——递归神转载 2016-09-05 13:57:21 · 1474 阅读 · 0 评论