机器学习--logistic回归和softmax回归

本文探讨了logistic回归和softmax回归之间的关系。logistic回归适用于二分类,其本质是对概率的估计;softmax则是其多分类推广。在softmax中,参数具有冗余性,通过加入权重衰减项可以解决这一问题。文章还比较了softmax回归与多个二分类logistic回归在处理互斥和非互斥类别情况时的选择,并给出了实际应用场景的例子。
摘要由CSDN通过智能技术生成

           logistic回归和softmax回归放在一起总结一下,其实softmax就是logistic的推广,logistic一般用于二分类,而softmax是多分类。

       logistic回归虽然也是叫回归,其实本身是用来分类的,logistic可以被看成是一种概率的估计,类似于线性回归的归一化,将输出值映射为(0,1),输入值大于0.5被分为1类,小于0.5被分为0类。

       

写博客一方面是自己总结知识,另一方面也是写出来方便以后自己复习,所以不拘泥于博客的版面,尤其是这种公式如此之多的编辑,我就自己写在本子上,上传咯。


        softmax: 用于多个类别的情况


在Softmax回归中将 \textstyle x 分类为类别 \textstyle j 的概率为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值