【Machine Learning | 吴恩达】课程笔记
文章平均质量分 57
将自己的 Coursera Machine Learning 学习过程记录下来与大家一起分享,包含每一周的笔记,Matlab代码和自己遇到的问题。内容涉及机器学习过程、监督与非监督的模型、学习算法、模型评价改进等。
Kevin亓(Qi)
努力做一个有温度的科技工作者。
展开
-
【机器学习-Coursera Machine Learning-吴恩达】课程回顾
前言 感谢吴恩达老师,看完课程后对机器学习有了一个大概的了解,现在回顾一下整个课程。 在课程中个人印象机器学习过程主要分为以下几个部分:模型(监督和非监督)、代价函数、学习算法、检验与改进。本文便按照课程顺序从这几个方面进行目录性记录,方便回顾课程。一、机器学习过程 - 模型(假设函数):h(x) - 代价函数:J(theta) - 学习算法 - 检验评价分析调整二、模型1. 监督学习...原创 2018-03-05 20:44:29 · 914 阅读 · 0 评论 -
第一周(基础知识 + 单变量线性回归)-【机器学习-Coursera Machine Learning-吴恩达】
目录: 机器学习介绍 单变量线性回归(模型、梯度下降) 线性代数回顾1 机器学习介绍:1)什么是机器学习? 一个计算机程序从经验E中学习如何处理任务T,并通过性能度量P来衡量,它处理任务T的表现会随着经验E的增加而提高2)监督学习与无监督学习? - 监督学习: 给一个数据集并且我们已经知道了正确的输出是什么样子的,我们已经知道了输入与输出之间的对应关系。 ...原创 2018-03-05 21:43:07 · 568 阅读 · 0 评论 -
第二周(多变量线性回归 +Matlab使用)-【机器学习-Coursera Machine Learning-吴恩达】
目录: 多变量线性回归(模型、梯度下降技巧) 特征选择和多项式回归 正规方程 Matlab学习1 多变量线性回归1)模型- 假设函数:- 参数:全部的 theta- 代价函数:和单变量回归一样- 梯度下降:2)梯度下降算法的实用技巧 - 特征缩放(Feature Scaling) 均值归一化 u为该特征平均值;s为范围,也就是max-min - 学习...原创 2018-03-05 22:02:40 · 3328 阅读 · 0 评论 -
第三周(Logistic回归 + Regularization)-【机器学习-Coursera Machine Learning-吴恩达】
目录: 逻辑回归模型 多类别分类 正则化1 逻辑回归模型1)逻辑回归的假设函数:利用Logistic函数,使输出范围控制在【0,1】之间2)决策边界由logistic函数的图像可以看出 当y=1时:也就是说:这样,就会形成一个判断输出为0还是1的边界(X为变量,与参数theta有关),称为决策边界。3)代价函数简化:(在使用梯度下降时,用这个函数确认每一次迭代J(theta)都是...原创 2018-03-05 22:17:49 · 1082 阅读 · 0 评论 -
第四周(神经网络表示)-【机器学习-Coursera Machine Learning-吴恩达】
目录: 模型表示 例子1 模型表示1)模型原理 输入层 + 隐藏层 + 输出层: 激活单元: 计算中间结点: 从第 j 层到 j+1 层的映射矩阵(权重矩阵): 权重矩阵的维度为 ( j+1层单元个数 ) * ( j层单元个数 + 1 ) 2) 模型表示向量化2 例子1)实例 AND 得出theta 从而获得假设函数2)实...原创 2018-03-07 13:41:55 · 436 阅读 · 0 评论 -
第五周(反向神经网络)-【机器学习-Coursera Machine Learning-吴恩达】
目录 代价函数 反向传播 神经网络总结1 代价函数2 反向传播算法——让代价函数最小化的算法让代价函数最小化,利用matlab函数库fminunc时在costFunction时需要·代价函数计算方法 ·代价函数的偏导数为了得到这个偏导数,使用反向传播算法:3 反向传播算法实现1)矩阵表达式和向量表达式的转换矩阵变为向量:向量还原矩阵:向量表达式便于使用优化函数,如 fminunc...原创 2018-03-07 14:07:55 · 566 阅读 · 0 评论 -
第六周(机器学习应用建议)-【机器学习-Coursera Machine Learning-吴恩达】
目录 评估学习算法: 方差和偏差 学习曲线 机器学习系统设计1 评估假设,选择多项式模型利用 测试集误差。线性回归:逻辑回归:当选择多项式模型时:一般进一步划分数据集为训练集60%、验证集20%、测试集20%·利用 训练集 优化参数 theta·使用 验证集 找到最小误差的多项式·使用 测试集 估计泛化误差2 偏差和方差:如何评价一个学习算法1)拟合与偏差/方差欠拟合:高偏...原创 2018-03-08 11:38:27 · 498 阅读 · 0 评论 -
第七周(SVM)-【机器学习-Coursera Machine Learning-吴恩达】
前言:说实话SVM,看了视频我确实还是不太理解,所以这里就之记一些重要的概念吧。看到一个好的文章:[机器学习] Coursera笔记 - Support Vector Machines支持向量机又叫做 大间距分类器。复杂SVM,处理非线性分类。代价函数:核函数——>相似度函数参数分析:...原创 2018-03-08 14:21:24 · 564 阅读 · 0 评论 -
第八周(无监督学习)-【机器学习-Coursera Machine Learning-吴恩达】
目录 K-means算法 PCA(主成分分析)1 K-means1)算法原理: a 选择聚类中心 b 迭代优化分二步 - 针对每一个样本划分到所属聚类中心 - 针对每一个聚类,重新选取聚类中心(某一类所有点坐标的平均值即为新的聚类中心)2) 优化目标 J :每一个样本到它所属的聚类中心的距离的平方3) 随机初始化中心局部最优情况:正确情况:为了...原创 2018-03-08 14:44:34 · 1146 阅读 · 0 评论 -
第九周(异常发现+推荐系统)-【机器学习-Coursera Machine Learning-吴恩达】
目录 异常检测 多元高斯分布的异常检测 推荐系统1 异常检测1)正态分布或高斯分布:2)异常检测算法:3)异常检测与监督学习的比较使用异常检测算法的情况- 不正常的样本较少,不利于学习;- 导致不正常的原因有很多,不方便进行学习时4)选择特征当特征不符合正态分布时,可以利用log或者根号等运算改变所有样本该特征值,然后作图观察是否符合正态分布2 多元高斯分布的异常检测1)多元高斯...原创 2018-03-08 16:26:28 · 1193 阅读 · 0 评论 -
第十周(大规模机器学习)-【机器学习-Coursera Machine Learning-吴恩达】
目录处理大数据集: 随机的梯度下降 映射化简1 随机的梯度下降 - 随机梯度下降算法对于每一次迭代,只需要对一个样本拟合好就可以了。它只需要一次关注一个样本一点点进行参数调整,这样不需要每一次都等到对所有数据进行扫描,从而降低复杂度 - 效果图:(实际上随机梯度下降会在最靠近全局最小值的区域内徘徊)小批量梯度下降三种梯度下降的比较:2 先进的主题:1)在线学习2)MapReduce和并...原创 2018-03-08 16:37:30 · 664 阅读 · 0 评论