【向量范数】详解常用的向量范数

1、Lp范数

对应于闵可夫斯基距离(Minkowski distance),假设n维向量x = {({x_1},{x_2}, \cdots ,{x_n})^T},其Lp范数记作||x|{|_p},定义为:

||x|{|_p} = {(\sum\limits_i {|{x_i}{|^p}} )^{\frac{1}{p}}}

2、L0范数

假设n维向量x = {({x_1},{x_2}, \cdots ,{x_n})^T},其L0范数记作||x|{|_0},定义为:

||x|{|_0} = \sum\limits_i {|{x_i}{|^0}}

L0范数表示向量中非零项的个数,因而L0范数常常用于稀疏编码。在特征选择中,通过最小化L0范数来寻找最少最优的稀疏特征项。不过这个问题是个NP难问题,而L1范数是L0范数的最优凸近似,经常需要转换为求解L1范数。

3、L1范数

当P=1时,也就是L1范数,对应曼哈顿距离(Manhattan distance),假设n维向量x = {({x_1},{x_2}, \cdots ,{x_n})^T},其L1范数记作||x|{|_1},定义为:

 ||x|{|_1} = \sum\limits_i {|{x_i}|}

L1范数表示向量中各个元素绝对值之和,也被称作“Lasso regularization”(稀疏规则算子)。

4、L2范数

当P=2时,也就是L2范数,对应欧式距离 (Manhattan distance), 假设n维向量x = {({x_1},{x_2}, \cdots ,{x_n})^T},其L2范数记作||x|{|_2},定义为:

 ||x|{|_2} = \sqrt {\sum\limits_i {|{x_i}{|^2}} }

L2范数是最常用的范数,它表示从原点出发到向量x确定的点的欧几里得距离。可用于优化正则化项,避免过拟合。

5、无穷范数

无穷范数对应切比雪夫距离 (Chebyshev distance), 假设n维向量x = {({x_1},{x_2}, \cdots ,{x_n})^T},其无穷范数记作||x|{|_\infty },定义为:

 ||x|{|_\infty } = \max (|{x_i}|)

它主要被用来度量向量中元素的最大值。

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序遇上智能星空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值